Home / Drug discovery / Biology / Bioinformatics

Bioinformatics for drug discovery and development

Our bioinformatics drug discovery services turn complex biological data into clear, actionable insight. Working across discovery and development, we combine computational analysis with experimental biology to guide decisions on biomarkers, patient selection, and mechanisms of action.

The result: faster interpretation, stronger predictions and more confident progress from early studies to IND.

Integrated biology CRO capabilities in bioinformatics

Our bioinformatics group works hand in hand with our wet-lab biologists to turn raw experimental results into meaning you can act on. With access to more than 270 annotated cell lines, we connect drug response data directly to genetic profiles to reveal the mechanisms and biomarkers that matter most.

Beyond single studies, we integrate synergy analysis, mechanistic biology and high-throughput screening data into cohesive datasets that support decision-making and regulatory submission.

The result is a clear, evidence-driven view of compound behavior that moves your discovery project forward.

Related services

KLUv/QBY/DwDGjyzpCSQRKT57/Ext4wdkCCkBgAAVFURGGI2plotmoUKAAAAgAAAACDZCWYKZQqz l1F5zLnhAAEY+A0HCMD4jVed47GUCacNCHp+CYBzmI1n+wXjjACNPIaS7zyHb9Ust1INPI858YyC 5RsO4OEcVsF5/ILvOwXzEw5Ax6qaXsSqmp5fAgiIWFVfKpYQ2MpVMkhArdr1vZreD0f83SPqPJZq khShNVSwTYYuHH71vLZxeYY/2VaVc526PUvLY7UrVdMu1hx7ybh2xzZsaydK+9pdz3VKU91wjcpv WDvNL/4xnlFanMNzjcuaSvO4ppJvljYgRcc3bOM0fOfaKUnzVVzx5mmOLZYcR+g6APmuIz9Wr/Mc r6OPXfWd43fOmeeYK0ldoJZAwPIMa3JOw2Sf53gNBcS5FtPynMfqnoJtTEmWP1zFldisjuE4krE9 oPP9OPrfzTHHZZZFywDE8scUc45Me1TxJhxHMl/FFf/JP7PoNE7Bbr6KK3Qc329pjmKMr1YYOBcQ d7Q4wO0DkAfEFDyPcTyNZxSc37UtoAXzlMwitMbof0ma+C274T/N8XzVeV6roqmi61TMERCraMkd zzFtFM3yPL/uy9KuO6u44sWz1PzpzZyWb/uOA9RaHOCO8fi241xAO8/xSvrQ1Mzy86Fopmh4hlFa gMXdcbqWWfGtCYhn+1WnNFueUyut+7pWQc2zaLmFyzT8uet6duMAcg7PsYnLclquM+MizuGcMyCX Zxkl4/Inb7HkjUkl32+3Y3ad0WIWHGPRcCWnJaAmxi/4ouUxHt8Z7Y41zXtJitBYtHznnFhVp2Ta A2oJ0ismq2ILAaKFx5bRm7jM0xIByHec4/BGy2N2HsNopyRFaDMcb0Ct93DADdO1nKdkhgaauAzO YfZU0a1J/OLPcbmiZrJUJssCCKEycZ7HM5xR0W1DW8UsqGUNMFOFNK/5bBPSeqbSOolAs2jdawBo XivQujbRejYgpPUsDWl9/Kb3ffzlKPp+fl0T/RdP/3tJnmI3vz9J78NQPP1ZkufZyz/6X55i+fVs o/UMDmG0Hs/2S+aAmafFL/gCaglSPsfgVcwSIDKGRgNQ0xQww+N5QM7J71RFt6ya4WrPcNXEZRzV xGm9e62PGql57Ws+NM8+iuUnTXL0339dE82yk6fvpzj+MvRf18axHEXxn2QonmH5dY00S+9J8vxj J82Q/Lp2dj+OJyl2kRTFkvy6Vv4vkuE3T/LrGUF2qyZOEzM0y7LsNF3fv///Z2vIZplpnmbW1cxk wy/+8ZO//OY/f/rVv372t9/9PfThD8NQDMeQDMvQDM8wDdUwW0M2bMM2dMMuevGLoSiKo0iKpWiK p5iKqriKrNiKrthHP/4xHMVxHMmxHM3xHNNRHdeRHdvRHTvpyU9mISmSI0mSJWmSJ5mSKrmSLNmS LtlLX/4yLMVyLMeSLMvSLM8yLdVyLdmyLd2ym978ZmiK5miSZmma5mlmKWu2pmv205//DE/xHE/y LE/zPM/0VM/1ZM/2dM+e+vSnYSqmY0qmZWqmZ5qmKpu2qZt2NfPqV0NVVEeVVEvVVE81VVV1VVm1 VV21r379a7iK67iSa7ma67mmq7quK7u2q7t21rOfDVmRHVmSLVmTzU42ZVV2ZVm2ZV22t779bdiG rdiOLdmWrdmebdqq7dqybdu6bXe9+93QFd3RJd3SNd3TTV3VXV3WbV3XZVVVPdVSHdVQ9aqbsmma mimZiuypnudZnuL5z362pmqeZlaao/nNbrblWqZlWY7uSZZ+HdPRHMlRdM1wDTM1PNevjt7N0lIM v/dslp7mWYbnN0lzzPxZmmpKZiQ5kqMnfTqerbhmPw1PlfzjV1NyzH5vx9ZkM7U8w9Kv5JqdpEmW IxmSvyX9aH4x8379qSn+8P82G73YdjYlxR763tHsq9931W3ZNVPTNE3TMz1TMzXLlEzJdBTTMA1/ 6lOf9tQ93bM925M92XM911M90zM9s7M8yZM8x1M8xTM8/+nPfvbTNV2zNdnVVM3UPE3TLM3SJM3R FM3Q/OY3vdnNbrplW7LlWmZqmZZnaZZlSZZjKZZh+Utf9tIlXbIlWVIlVTIlT9IkSZIkRTIkP+nJ TrojO66jOp6jOZbjOI6jOIbjH7M+umIrsuIqqmIqnmIpkuIoimIoerGLbtiGbLiGaniGZliGZDiG YhiGP+yh+9vPfvWn//znLz/5xy/+LPz++9+/61m/+tWrPvWnP73pS0960Yc+9N97373b2752taf9 7Gc3e9nJPvaxiz3sv/veM4GMIFOp2te6liVYmip+wTTtQWiMnI5lFXy/tKr5xWLkaInYhlscTUXH avtVr3EuxzjaHatoedXK4Uwoj2l4zuS0DFdumIbnOIBcwVV0PKtaK4Ccp2Ibv+OU3LLhmyXPM7zm d5rfaSuHMzTmrnNZ1Wp0BkfJFYSW0OhaXtESrZXKYQBilqrV5rruzHXd0Vp47Fa1O85zOBXn+ABO PKfk/IYzL1yea9RrAMeu5zgA3b7uehWzCC2hxTc8uwlbhj+ElmDRcgq+OxpCS+SpuACF0VRxAPJd 56n4g8jqFS2xY/X90jIrNmdM5iVj0XJOy3eGri8mO5bHHFY913eG4zI8p+PXq15VdMtxGcfy9W5Z TZ+O8xye3S96c/RkeZ7/7P/0vpufqf1SJd/v+RdaKYoLBi2z5BsTs+AMVwIQy59RFZtUdAtAnMP0 Hedzaiq9JOUyc9RI8mumeWqkL73WSfLUyNMvNEYsf+oOHdsYU/ea+Bk5yxTAtJJNOR3ndL2aaJkV q6bS43c8AK68Yhczj801Hm/ymHXDHQ/Pbn6npnGOVbXllKRc5jVGPMMpTsy64YpJ/JKUy77GwHOZ 9tzxHNv0Loqc/E5jur5oDABiOUDsT238/FlqP/Thn+Xx89/7URu/78c4h2f7FXfE3z3uuuGXXd8J El3LrHhDgOgaQ303HJd1jYGzaDnPY07Mgl8SUylJuUxjxCwY95hCScplpPca445Rr9hFNcsx1fS9 JPVaDr/u2o1n2TWNkpTLXCl4VjUA6nmORRqc0zELtmg0PGDVGPhdz/WK43GqvjM5Hb9iqZrluMwc Sz/2sPfew48cTy0ku+hF8fc+kt/3pvbHP4a9+/D0/38nqY1jL8U//nI8yw+PN3KE47JyPLXQm9pJ auT/GkNArbJoWUXHapXjstAMSa8x4gBkHIcD0PDKcdn/DNJr4+8f9B4svcaIc5ilaznBCoB/idFH jLRFHJtVbaHhA2Ach2tZNanvRlto4u9egPi71xYaTtcpiRbnMo6KQdpCw+M7fg3gIDRGPOdyh+Oy BEJLyLT8UqUIjXHXLsdl/vvf+TUGXcv4HX9MpiTluKx/4tcSG8Rd5/Cd47F5lmga465zOL5Xjsu0 /oWLGFWr0gUns3EBYVtKUFrEo2sJvMfznvd4nssIOWbUbhSLtTNQ3vDFSa3nsrZkr6PW054IxVFg 5FCAfR2CHVa9/mxozotCOA2LZ+l8HmEIrlD8o2MxGy6LVVKFVzewxyDIIK6ImSKdM5wiPeN5IyEK 7Vi8VkEohwxy3DjpMEMG7TSaVbFYWxTtuExj6cCQI4LdLVAVniV4T1RBYOMWyLFxC1R/R4Ww0ZqR KjyXrQQHVX8ZMpL+8CyOw99gXsnpQrsVr9WOyxCeQdVfkw1EYxgIcJmLPRl/IEb6GsZu0KGIFTbU g28eFxbeuG+VPNDka4I6sHST6Is37pvLUJbKM4aoD+luWF4TL+GNRqUVEjMflpR4TZzLRHij7G7X xD14IxSdiP+aKUNx6lzmZRyHX/ibuEXAQ5qLmdgE7pvLWiUiPoSi+33JwntCfUAXF3Iuq09gaoR0 gUB+DKm6/YPdAV7giCEXaytAEMVLQDAYVJ5xSqAcMkiwCKwq4acRifcdCznAfqBNCzi/M8EDkWiN OPi9JiPaHUIC2nFZaMGkGt0i4zj8we0yxe52kCo8wWBQ9YX3eH5wmwwWLiuANqy3rRvW+wpa3tYp aHmb6JwsttWFdluBpUn8/AxP35MYT3+zmnwKw7A2YEEjo/xksilT2lRnIJwYxtUTCoq6gWnLiHa2 QMJGDdvEoOoKATZUMAo/Ju5BDnhiIHDfA57+j4i5sHgHnMtKZcZEZEQfAk6wCYSt4uwipuJ0fWgf u1vkxmGLJt/Lb84HdHEddDE5ItgJExZ+f5vAhJGTPspU6FxISvHKbHsICfViSjR5aGA4L2anUfB9 FzaBSr+AtsgAQVUiNQRXucKEvFm6U9xLkclLZ1G6u62AjSdHh26RbtPtCjUjl7kCJa/SCokjn/mw pJugoAEzxddECwwSAqGBhCHuNRMVNDa6QXiDy0Sx/5qHQ4aEC0Y37Q2qXhCdiN+hXfNx2RAflQbE 4Vw2kBQcWqS+ijGD3L2EYrf0Bo4fglc8Jbg/MNNkVPGICBSkDEnEVtpTt4wiCPTw71dpgtELiSku sUqdy0LzxLzsgssH8fBVELosZpzUzRGXeasCUi9HrmoUFbCh2lEgcWFIncsSBOMAiaQpmVrUshh1 yNXkRSoDnKU8QB3z5gN4bUlQv+SD1/RhDPyqz+/t6tjPYGJ/YKPYyvo4BCCuhwsrA3whEHKdp9Ar Ajbl01/USdPicBmLPnww9aaDSAwQXOII5RBDIRcTSRngXDZImDh9QbARPpzuEfSQE1O47DuYE0p4 aHBarhhmc7kLIFzGgEk0LQgD2QySk6SwdHbABG2Wvg6IXFZyVa6SQJouPO4jhiRTIhYieICg8nnR jstMnU3FLg2q/hfwhqzjSPcNqu4LbknSqIiCI4LdL8pKFxgQ75vLMBBWfOj8yOtpxRWDo/BymWeA 8PbTaqFdXCS10rAXkTtf7gDnMo3acftI1Lg/nAKBhFBUt3NZLRpU3RIjYYQRdge4RdHdHhK5rlEL KkqiAYHsHnm3L23nsnw1qHq7IEG2hUTBFlRu81x3gBMyOOzRA8xliW9Q9bwbSbrABsdukOBiOrp4 82oIdCQu07C+QDdKiC0qVfg3Vg+JlmF70S5mVsJPQEw1Okxi3caYa1B1UYmIDxt3it2Z1+Y1o8sk xIKJKLAd1swp0u2XKtwMMYkXqZ/LEBwR7DWLINzqvFLxPEIBA6d6SBMcM+qSwWOm1lOHy0IeDChs IBglhaPtAt+66vM7ol0LYjqdi2UH6OGzB9KGr7Ep0jlUZ/2hQqqBWBBhpltOyAX0Cog3JFi8GtKo 15K+6iED6VoOBnETXr4gcUS/4LXKZaLIAXY7sW7jzCEsG44I9o0nVlAfku9YoNNmctkcc19vmNhq 0SWxuS602zgFLW+DtKPFprgIJDbMl+o2i/u9Lcf/feOV3KyEH6IA04WKrsMg96iPEFXxpfyrVPI8 l7ntIQMZMO4N+CUvndqjc4SAB4MacjYJhQVVLF0bU++YJShItDNPI9o9JqeIphDi4ueNJL0/xsfX tMJI2rnJSKqhCafLZRQQGUnXQw5CckXBHXYe8CXQ9o7IHWA5NOluLycykg4Qj/uOOByH76odaLed lfDjMpHK5G0eHkFsHPd7G4HK5G3cl+q2SEHL22Ad+6Ao2Z63zKglrYRlyhsskFY6+ZQ2YCwyafnS zeOuekqv/2zS74viiqPjMgv+cVGTWLcxzFuP7iSAG3x5csU+CBOkwNNnUiAVcEJaTy4mlb71p65t TEVguazsjrZ7FkEKvDvx7Aha3YOVtJ4VZMDlDrC1Ld+hpxJou2JDkALxTzy7msWQGI7V+PiLF+jU Pfs2+AEV4sFiDJeTOvpWUPtHEZBAZMTBj8tszoh2CJED7N/SFxsbsngbhxHrtm91SmwtueVt58Al sQm40G7bHMDF5oiEia1FbhzdZ2gExG/pwO7b2xBqEiwDgrE3OXWESohvS1gb0BI5oTyXsUoDmA5T yN5v1pP3HVPF0ZGnEe1UPQSVtXtaCAy8yAHSDE01LChEThTCMag6esI8RBc7oh0rMqj6wdKBHUR9 Hl15GtGOyzwtVtWpmB1NiWTlpKDG0LyXpGCWC4g73kvSRqqu1Cm6fT+cj8up+M6sWJnQ++EIiDuq GPVq3w+HvmNKncfS98PJcbjCdtj3w4FtPH7Bl/fDwVExTk7X7vvhpPE81ylavudYVb9Utv3NOT7n uMq25xy/bVv13bZ9jqJp+nKMWfBL/m67m7dt33EA+Wa1AShNFdPyKmYRAHy3bdet77bt77ZtmiXj sQr18Y6qC2r7nlMpeEZ995zTsXwHcNctW55Xn+pOse6adccz7AekZptOpfBPdadmOf9Ud6oV4LPh +Y4D1J/qTg3I8Z7LOaouiGl5XsWqz/Vi/e9OrWg5ZsH2fcOo3lfxnN/16rZn1ZfTK1QM/3J6NccB 4llGfbgNs2L6Rdc5Xac+3IbtV53y84fbd6yCW/iH23mMf7ht3yErv+MAdG3Lc+qzBcByTsN1KsZj Krv+bAF1nMstAHA8vm07hn+2gBkF03GKjuE0DX/4rbrrl5dX9Q+gJUYZDIiDGGmqOIfrVUPFIO3j fB5EnNPy90q5BrxSrbz+Xqnbhl+5jIrjWU3VbIzHvtWqVsXxjPpcL5Yts1q9oiWoeqLdsequY/yO A8T3PNcpFw3PKFt24QgWDd8xC55n+EPVBSD4yY7peA5mowmIZ1ueVxUscVieU03O6ZSU8ZqWtZrW TpUcAaBu4fFsy/kcs8QBYI4kXd1xZo4FyJn+YZojSbWvomFarmicTKt5n9cXUANZLadl+M5xul4R WiOF4zu163tlJR4PKu6pVRx3FBybC/+7ufgrUVyEqzNeoM4Y7qU/tbMkyxu2DIBnG5dZryE2aeZ3 TfxexutN3ZnjTc9T8RxzUlwiCgmo1ffD0RCqu07FG7mS36kqzuGbJVsQWgOXb/gjSen49QBY4QCU vZekP88vjuY3miMAYfhNsf+ym2X/StNsDRggQEC+iiuoOHXHak6ckmcPwAqP6ZpWxa5UHQlJBeU9 kTNq/U1zLRA2fu5DADJAxDjphCSQsIiCRic9jSPrkiAZjEqzeO9mIdE7winSUZVn1TmRA+wdwYL9 L8S9VRoQLksNXCup5rbWQDXQfgcYbiubCKxsbTFO6rrPuIEfyo8d0QeXuq42IWFywb54pbiQyw5g qvAFNm6B/hseLrTb+pfqtpGGXmzoLCe20sJcbJ6qSGyr+73t8qW6BGKg2yYqk7e54txtEMRAt3HZ 5QAutr9hvQLu8UC2jpn4AxylTDkPxyXNY/SnG2JLQ4ijtoCdkWVAuk36/YjreYTqC3GK9EWMAXuL EWj7G5qOjsvQFTXpKLJEwLdeifSWKPT213ui3xbhZDh1bpiFgRLKiTRQtj10NkuxGUqa20oZgn4h BmlGuWyUib29w+STnqOcxTYJ08XGZZWClrfh+KegVfGFEi354IAzQ2CjQRpaSMkF1Mw4y+cypgsZ DITnYelhhIhaFcLZqEf4DRa0bR8sQEfXSdh14YCrQCZ+Z1aqTcAJckbslhhq/CZJKX5rEJZT5zLD RnHqLfrw6ZuY9/YIieR2SHu6PbQvbWcsBAQ6UULUiHO3nbOc6KS25GPueoR4rgsD4jKRXJBVFCvo XJaGSohvIU8b0EMzp++JxeyPMWA3lZ+2bya3haGoi3fAueyAtmL34iHfd+uCefulJrzdBXXcjj66 2yFiqtHNGPVvlpek2DKMx32zNKfqlVcBhiIs3dl9UpWBRKNV6BxYx/VgK4T3fUBwuDuHDHT2qtFl XlyGKRhFBYluNZkQidf0iVnA1zPLmhZnRbE95wOLjC7nyYkprcvJBWFVVK7SBKtwyIXdig8VDu3i WAKIU2CQJdEA3Ljplsgl22CgQPBQnGYcOcCxGpRwWQvvyDEdLaDQwOAWoOZmKbYUt8QSBAgvpGi/ 4hXyHgZ7PO+SDGoo6WTvJSeCJc1DBQ74sTziz2UJVajiV3oAe7X+ONuBdjjK0dUt2Ag24jLYCBQi oAawX0EbZEetD2GHlQJ2WHVDzDSAYKxoDpfRnBelOTSnE1pX75XhcEbC4XlMYhP/kOTspjEtv3Vf kxGNJDbfdKG3+U2XYdGWCD1ESSOhT9slPIOqf/bXhgz3a/xeU4VnHanCs+vB0oG3oTzgGYaGYBOg X7HSSzWwJiJmxLw5L5B5U3gjXcAbksve/+EMpbFhwhsCni8nWDmlcHzNEWO1OERMpkH6DK8Zwhtk PnLha1LMeXQrareDNzChtgQjkGccMTnqJRaJrA8lORDIz8l7+7i9A9wkgi0yhiOQfxMhuZ3ljkiJ TVkgkP/ST3dRcgc4KeEhCaONQGpYX8AgcQci16aAQrTGy8x1FFBd19Snrm7PQYgHpaC28dHOKx+0 H8GZf+ppiE7/pZC9j+VoK4VBagsYygJ0mirKlB9xYj/lMs8dtV4l6AnIh8JJppAqMoXU/62rjqNe HPWGqP+tq77iKBzFZbfpNrkch78SWmvoNr0oSKwM4MP3YIfV92CHlQc7rPon9PlIbFH9+Z0L71x4 3LnwuNcfTyjzhDzh51XEBXHvcUHc44K4I+KCuL8yrwwnZMgdp0hfOZxxivQVJp4ifTXBMWXjPI8w zzAek3HymsDOQjh5eUYhpPhw8howCuEEdJ2FcDGaQuqPsMII6+NoSP2Rx+QUifhQRgYH2yOHofl7 /lc1eeRo974q/FV1rgu7oQHsdu8A9rYn8kRtqbU90ULUltrbE6EezEisrHr/Go1U4Q8ZQ4YluCGp whsyaMdlv8RlXMZlky/VbZBEiOX5AoKLeIPnTkNLBBYheQNyAQ/rzfKzwOT7Z2X1fOUkSPmvUxwd eSorHxc1IPitopAIIQqFOOr91pXI7gihNfQhGCsPwbAMYPDzxoFfdS6DjV4UNoKNQKGBX3UDv7JF tsgWvejHMBCt6wc7rD5dov7UnxflMk9oy6QKv3Ir7qYKFx57uhfiFOkHS7dpGA+KyHkeYcLheYQh xaZ4zyPkspBibxrGA3YWwsnrLIRhbOInB4oPJ6/JgOIf9lkI8Yl/5CziwWW1JWcRjy4nfS6T5KRP gOGkn31JwSLycTTnMlMkwoqwIqfSP31f+qdWSP0xVUj9g5htutDwo2zfeqK2ZGgXovYzar0nattS Hn+WVXTbAN7gMrI71Q5I505DLlsUuhouBErffxBUVv0tKF7/WGsLuDHUiZ+xkPH3Qm/xoVvScRmO enMuIyiF1L/6T4hEMFb9Nr236Q1v0+sRjFUncBz+eptu04v+xcCvFgO/go1eFJQAgTYD2Iew0Yt+ Pp/PJ7SGsMOqf9hhBTusbJGFYPIuPA4TY6rwB/AbVB1EIvElTpHuJU6R3iVOkZ44RfqaWOG4vzKv zMsJKUxw3A8mOO4Um8J5HtkGcuExlyU0jAflUHoeoYbxoIQUGwxjE/8IJy+EGE5eEwSjEE5eCi7L 2ZyVFEgKEluLWHMWTvo3i3hEWKaQ+j9xQdwjrI+jj9xnPBEui7DC7/vn8zldaPdf1TuIHYevUDdw br6q1zUNYP9RtieqvxNbb4fMZwkwtcWDKRAohwzWdOcwqPocc9GOy8gKYiAgIlgZaORzWUzAmLgq djE/lAtiE3AHUG++ZsibZfqaMN542ArY+P7/V46ShDG+pmZkIXXvHTD9TBBa2ATJi7kfEdVZ/2tK vIHRvTkwA/yPGfPbBO57FCNhhIg5QNC8/Vy8A1gk3nfKNPEGAtnp1G4PbXdAEoml/9oUCCSocgci kUgw2x4CgfyHijsYJcTOggTZCGR48cyN7jvFbi7LJAgHwinSVe4o5Gbe7sFyWcywLcwOp3uwnElM YEETUF29i+04TI7S3VbUHIRwPu4AW64IVuWqCdvPpbGfLiiP+LMFSMTfNEqE5G5tAUEv2A0fXWEI MxJLBsJlIwtO+o0Q/NYVjnpRLg+pf+VgIfWveK26QupfRThKlAjdplfm7Th6RDAQjFX/CMaqlxyH Hwq9J6rgMssA9iAQCAQqxANYHPjVwK86l/mBX3XYCOSxo9Z38GM7dtT6NRNhh5UtskW26EU/IS5b Feio9b2xgp487hCPxzPgpAr/XXjswuMOuvD64+EyRSfU0ZyX5rw050VpzmswQE6RvnYTHHfQBMed yxYmOO6vzMsJIRLlpmFkFNsWvWhHCTnPIzRQ3nCjIDSMR4uGFJvLKAQNg9LzziPcTF7dbXrRbgI7 C2FswoZALjzuk9cEQfEPzvAxCmGB4h+TLDbxuWPkMtHAr7qkICF6uayFk7jMomE8DC3iISmQ4LU6 aBGP7F2I0E6Ss4hHp8EZJzsTTSH1J0IUjuYRHH1l3gjrkVPUGOlHWJHaEmG9J8plMTRvtwheq91C FFL/v00X2nHZb+GDqt+m6zYPMdMLIbQchz84LY7DJ2wox+HHTBfaaf6r4jL3kEG7l3B7HIdvm64O oXqTc0D9sA9jOLq6BaobOOItA9irG1hTCLlxMghRXuuhHZe5MJfBKgO4/iiU4FtXncvaUudpMAMI xqq3pfdEYaMX7VrDl4n7x4a2JzIkPCY47m3JQBiFFUqjECRMfX2voCrKiHaf93jeVTsonQP1qBA2 Srl8HuGkbRTCjuHJXx6SQS+zrjppgxz+IREXxP0QQYgLGGxzFIhQLDCFqk8a/pIlDbkMPI1oZ0Ly uJd4buBkQ6h50W4kjagYeghAOji3YufIa4BsO5H6Q1YO9q+bjFr/KdJU4T+CXKDyDZrQe6KHArEV cLnMc6BZDIMADLKLAdQ4ILJcqA+7FguCfwew/zyuBeEU6SMLBUoEYqQfCQdUBcdx+IvPAE6wo9Z7 3wYF9tcHexWUan8eYdgJpRK/pCBQ/1n5uAii005qU8rWemoYPOnKcHjI7hGBncvAjQjsJsGcVYxL ttZVohR/GFEnESW+QuLTnUcYyngUTvpc1jcZsOMhx+F/lQzYYwtJplszCsIp0r/nBf1lEYEUIp7L votKZL3eBYXwvJcR7RQw9fWs1QbjsrRIdZUOzs8ExdQ6eL5HQHe8CULqtyUD2CvKEewIf/jG3DSi 3YfIwX6LvDmDdicTbSkhvnUEO5eNnmMEOw4xqHr/4P/+4nv/n9C7Wy0OMRKCp8jnMg+C4ILLPLAD T5lGSBcU4Ep5BziB/N4p0rms5Z0iHfQwDzh2v+K38DyF550i3Se+RaJLnDYBbrQpoBAEIvVuwXrz se/ClCFLczVsfRQUd3mKlFQDa4LLPAMV3gRdCEMQG3FwVqB7XWydGVFPweAjRUZKQg0ZCHBx22L+ FLtfcQB70nfAChBEMYgxYCdpWF8gN+GjEe1CE076PiH1c9lXer3HDmDvCRqGcNEYtX5+EXKaCYXA cRB3t34f6GDQPgpr18peAv+DdB249WiADITpIhSyeJvXVQiwzqwEh9dnUHVvTBVeAcmAPbZ5HiGu wkk/Tl2nNfIp0Q68jGgHMuzXLy4j2i2+0uvVi8Lxgv0x6bXAhO2r7XnKiHYPCmrssI3j8D0IymU2 t3peQTnR3fMwNEc7BMWwRsDIiHYDX+n1H+wshFwGiYxo1z8h9Y+8SMcYE+II9m/EDZmBjJdcoTqT OKA2svP1Vo2QOQjJ3HNCnVhUUIuoMSQGl4U2LykUuwNsbOVINFJgmiQ+aEN1YWElex5XacmHTWAR 4kpqC9jB7enjFIPFVxiNEdIxEpMBjEhHrQcPZqrwIOEU6WAJ0U/FbQgpBAmTy2UnAYFC+BFOkU4y UHEfXznYP5bWdRNmx66iz8nViCLL8j1pRDsEqJNGtOuYhCH8SCO6KXx6A1JKnF7LceZPDowFLrAX XGw4IJf+yfcBcGBEu9BNmQbIV6P9Ygga0a4GjR40ol2ChEK7DhpREDSiHbhq2A9KlQ/2S8ROWBKB /QQC+c6Idj2jGmjlQoyTsswB0hsXMvmoOiqaxFc5ATeS+Cq3VlapTKpgfbO6aUAeib/ojGi3EBeJ X7hNkU4QIKBd6NF4zYh2puSR8lwGaka0845FytcWj1EWUt7TjGj3dSyUlyg0I9qFm0fE+80L9lgB TvrdKKR+hfdJ3pK3viWF4y15TMpqFEJQgoKdyx6eAfUvVsdagDsHmijRM4cjnQQCdckIdi47Ya5U mzM8K7GyiIxot0AwVr2LjGjXwQ6rHhnRThEXIExw3MEP0Xv+Ogvhh7JYnrc5I1pnRtTU8Gvnqh0m DI6ELN6mCtPF9jDZwnb5UgNNt00O4GIDTbawsS602z4HcLGJF4HEZvisRkhC0qahJeZpIKzUYtIl qvcCHgqMln+wVs/bhxf7Nbjqp32FSJwoK6MQ/tLSHSy2yGW2I1Vw2QqynFRR+ei4jglD87oXTYrs tAMs+RojaRsyKBAC2h1g863mspnC+T7HGkx+h4CW/Ar45XTSsS4IQ6wt4P2KYfr2ejVEhV46DXkt 4sHhLAWXvSYG31lBNrEKaiVeHEpDgxXUVhrdgw0tlYFG3o0kPY8NC5+j0pRHRcIFHCigulBS+jSQ d64wIHUDFiEJTNh+M5dTqASXcRmXWc7JYmvMcmKDGPAIqMDi6p8NaPGiAyOnBpSzpDcIuYBcNjlw KY93rBFyCcFumAE/HgiHT0YuAz+XlZVT7OYyvDBGUlfAs4JswMtJDb9nfrmMIIdjbKJzvbR8lgEB TcoytVULDpiJrQxIu1pGSHteDOGjUkL8jUT2nmVR1Fz2BzJy6uUyl+Q1uAz0al4u20KPXg84uMyC //veMl+q2zAhi7d9BAXEtlmYiw22IhEJOJL4BC9lSSUvBqU/GKjO2x7WBiykzJRfFzDPuz6dEbKZ SGCQUR9/B6y3EKM14QUcQ4cA9Mrjg+85HFIbEoNikSDY5BVxiB8b7naj1nNZATynrmJ2mdwUHFOF h31aRqnA00lHis2D9ObLkEE7RuXjYgwk5h0sJpWtlcvy+ODL2OB0uSwkPjrubdNeOhm7B+teNKkU 0m0vvYhUUPv7p64uWjSE6uFl+qBSa4Q8WKVVL5gmnwp8tQU8kBwMYne6+HPem4afBSf9hkiFsNFM +bhvLkMLPC8N+xGLj8izxOcyLrMjic9lBYWID1Umb2tLH28zV6fEhlmYi60x0HSkgpa3HbjMQiCx pO2rhPJribHqMFEzQ14ErNevBQ/Tr5D3BrQoWq/XFBS44apYrFy2yqDwymXxh8u4jMtYi5Q/R2go j7lswsZcXIZ4FY/D/9zip3ooK9aIECakVbUpnC46Ek6X8y8ntZMqAstgawPD7Vz2eSovHGMF8oWA AAdk+vRfIvGf5IlMfyA6FvDCsGQgkBJq0l8vi/cvPsCFXBZ68zS0MYschMEE3vMbx4RgZbyh6SbA FFv+u/yibOHjQSNctnFNGhBPyk0uSOD72A/aXqYPC9lO6nK8LztiC5QGymW1CJVbNg5COsEYSUeh z/yidGWgUWKU7tZLme0JifxW5bAT0npvYySlPHIQUuGooJbjY+P7Y2Z7XgiXk6oKkJGUyyAkGUlP S4bEKFmP+8YIbBL/80WGMBLeGxCTWGggjoVAGj4866rHYpJPQywHg4yTF435YDDYRy475xfdZnNB Lw755zI8xoVcBn7R5vCBnEAYDXG1J7iFcBlc8jyCyzaouH+TC3YuK9gsxXaDPp20NSB3LU5ADwJp yGUczlK0MOSp3Tq5yZU4KB8Il8WfQ+nq/Gduhhh6wTUIhEvlMjluGZBNhcFlEEjC2zghi7fdi1S3 UVxot1UO4GKr2DBvEyAcFBf3e5v6pboN8qU6MhS7WilmwEx8VSKadJhB1fm8gl5ADwHR8lz2ogkz JEbgYJCN5/tp6AD7jGhnK0yp77nMgDYe3YDxUK1chpbwSv1Kb9GIgiYX7K3C5EG5rPsGD8LyCinF SF8tU4V/pRHxO+T/vvONCHaZVf3Murj8krApmMIgXs5E2lFp7aQmdg0ZI1jLgBQK7ABNEE6R3hA7 FtBBwKB0xDniMlPqBLcodg0ZBNuwYjWf12C3Ow1Fd6SGwEKHD+Q2uPIKyTuPsMHQCIilKwT2GjJq FwIEtEMQPkPi0SG8kCSCcGOcx3aNysfFBybFfsKAY4NrVmxBZDtpRYCFSQkRz+SiaMdqvU+bjzW1 Rg0IlylMqR+ZUKhUldWpqCmhQjQjIgJBgAQAAxMAIBgcFA8KJtPpOrcHFAADQjYmTkRGNC4iLBSG Q3FoHBAJQzkMw0CKwjCQg8opyYwYAJggI8BjMV6Bz+K+S6gL2hMG+wjtlxbQCW0bUaFPid3q2rvP 4Oiz7UbaPyDKF1UNaAZZ30GeFwGxadXZi/BknJshgZeBpqCqCPynzulXYT/EvqNYyrJJz52j08IN 1tqCPUh4r8EeIQwJAZQ5AhOS5CYEA/b65WiCH1CFyKGXHWqxHhKw7OF8zNrpPnokWvSmMny0tjTi wY9QYnzyEaI8BneavVL7uRNFj7NYpD3bty1AInhF3F5DAPWrggDqbZQ6kmsKam5bJwBkrllFJFah Jl9/AX+CoGaJZ3qCK0TWm6vrexUK0hqyZc1CNV6SPsy0vqPTbCtQg+sc+jaioWWUp1EeIhEE591/ FGDGaiBDfGQUS3Z4GtdLWf6yWOFHbAWYyEeGyqUYmsVOjLDAySvDZfL3Ciae7Fv5UqxKBQELYECJ 0V3bDCZeDF3aZtn6stoN2R9G5IommDqRp++/VzdqF5ZZPhgoNwwX70Ddpkb7s9zl/BSA6pLRhkH1 RYEB5pXj1gWBzUtHTku9L1JqlfMr9MyaBTFtaBGwysUcVmphuEE2VFbeBuah36tEDn4hO3FfuEKx TlQppRO58KY0uXYnFOWk5LVOXE04qITGmSBE95VBTeMBAxPPa/dVt8JXkshg2D1HwrWbBiq60lDQ dd+DM2Vm7soAPVbKMv85OyJdQ/9flrwtnRwAC8Pxm1TKSkXFUjV6ntjgspRxILMpRC72am3P4REG TDX9Yyu8VWMD11j0KSNYCD2x5ErjHugtCvpu+/BpCEvpiXBTzahMdgMVsJw/D9X6uxR7QSyAGr0V QOY+amDuNkqNyiEcRDTgL6PlDww+zipORS5K26bsxJYSSUSQoS6RbhQYlWc4hYJAcfSN8J0ELj1t 5lbw5CBeoR7GAgUy1LO4dP3fcf0o5QK+k3QMMC5RgPEKEeG01O60EapHnI0mOn4R2nFfBiUQ5QjB 0EAV4ZdJL0agPFxs22PACmCWljQCz/kt6n6CDtn1hR2YlGjiyOlvJ2nYeCDxmhb8Xjpj1YByTQsd qd6nZu2tanY4DP3DYTIunhWeXOUJi0MKS/PgP6SFv+z4q9+I2btu+seKFJzWk6hNQ+AuiPwvqxKr ntSLmlOd5lpZBxMcxxyp/uQ/noUxfceMDHfmJL+aYwlTJP3LFSTuJvX5OJDLdKix9FrD0YejTnXD LfffU7WJR3Pgg4YBmLHJroCoS5R7hnSYlyhy6CwFy3/8mkdO69ECnWlUJ62DTNEaHRiLqWOTvivh JT8TBo+MpcYYj+iV/sYcweZ44weYZbR2j3TQHfduhE3a2nxMgLraakj9ahaLbZf1mS7PRulEkowN 2o4r1kks6MWY3LUFIqgGM/eErauUXZjOR7Ak3+wLXaROosswaF6KOcN2FcEMyVEQcP7ARdl7yMrE SxQThwIRSs7Mhoz9L5Mtbm57FrgYJt0M8zewco3QoG6FL3WCBXHyyWLhLta72OW8ElesCv8EvyVH qE8eohVA1pasb0T9GY8TvvdDqyRiaALqj8Cy1+gutM01Df15BpLnF77ei0VUdbZhEQCgFeL9l1sI X30bVQKmX7ifDrvSalr0JhUdEDGOBIxyE0C6liWV+zfOuwr1lGN334keWVtFXq1dcmbDuUGslat0 /KfKDh11PsVT9os7cJePWnPWobWVsPcuhaYqo8A8DAP4TGYfPRmcKNTmVs9t75erK9di9S4OyBRt KFj88fTitu3s6MRk8JDiOAvPm7JGDoCZ7kjoj0SGiU7MrBtt9t02NgKdgVazZAxwy8+Racian4Du E1vKYKrMx72BjOmgJBXXHf0/d8KN9iEl9AyKyILiWE0m40n46FcmKZF6PrzUgCieDqq3u960oS9p UGyIITaJQI/lvk5gHOyKv399l6HBYW1EguZgQUID1xaVBTHroFIW47LvE4bJTVFJ/Ly4IMPYYEoR oe+/RPbmndrq+yRqqbPT79643RzC2f3/EhyXwSOFt2eLs9m7mhvS74cQt4P03LKN4iaVmjErYSkL Af6bVHK14n153JK7mbn36diTDkWhtZPzK0AHFlSIQiBq0WNtDR5s98PNgqvnZsdx1kTvSaORJu38 d+C4qohlhgvr///hLsQk/YPO7f/Dwx03Y6S1hQqPcE8tI4RBhiwSi28kGjvDagpvOhh0WIOI2Tih 6aexqkF0d7x8E2boOfWsA7w/pLsVzZCt1P7nRGsAKZvN8peKS9Z6SHWS2iqcIrPUUlmhMbLu0pne hmYlxhhNSmHzCUsiMm1ohvGKzL0XJ7bG+yNaECPwIwlk89NLrP+A3KG9y/RG8D+pSqK93P4zcOsW r1Jkaj39/RGo+wn5sRCC2gq1wLYQG1b7Krwrymd2LkQUZ3dfHd7iKI059azSzSCLuynzx5hmFghm 1e2x2l9ru0iUHjtYJdKnn5Qfw47hh5Y9QgDhx0biXJ2RNXhrASMzKeSyNPqjmkCQ2N/zB3drsGix 0dGRKETuLq4jIZdErSQhNsDbSD+tlDhBc7eDXZvJ4D0qrlpTsjuTXSof3plSXOCOE2b3TLrbDN6G PBJh5QcprrgMQcJbz92wvRKteWinOCrM1zb2f8gxL40Y/o9k3H6mZsRP285smshZlfXgPUZMTTxx zSZ3D8rItldscUkUL+AfRkvqyWrfTyVxti5sjRTZk7lw6Sn61hS4TrRNukAdn3Sp0IpQamm7tgCE cJt4/QqPcovbL3qLZcXt5WubOYoGb1GWCqdokqlRTrHocGIswI47shRUnGMBdJEWXp+o7fNAcNuA Y2v1/Qel2OgVn5iOfseG/AAhUmduP2BFv/ikM8geBddmaX/Qe0zyj28hF54HbH7yoUchZA3Y1Z8R jWXfVaAHrwjGNQKnokX34dwVtyJCJWTSPmN8hGWqRMqF2oCMQrPGIdgPqVISTZNYx8YSiR7Wwwk8 m3YIbT88p2OLpiI09KwEBQ3d1NZNYo4tPGwXRlu7xxq5YJv7zLadeE4Q1Cr1OWKZ5h4D/XkixbyH rnzo0UKsNyu9P2KbNdQI7lYP2sV4Nh2OGsGKiclkVbhYrypoiOjRnXBDdtBISY4IsiNHrOjowsZw iiO4Tvwlq9555K1VR3aBXOMeiWOOXHYMlnWom3NacSTVhRBPssTSRF3DIATAjf+KMcLsM6BkxblY hbjBfh7CGo60KPIviMFD/DmfPeH17K5IMkzGqzDlzgWyqwTlQcBpS2wOjH8HNpM/XAhrf6LuoYfb W/TTWOtRrm8NWVZPl8N/ti5O3s+vAG1soZBIhpzQaQMPOgjAM71j94Rmyy47f/jYA/DPUTPZH6y2 SIE4ZChkyTnYf6VhgQhl+fz4NlT/g//+67RNd0IAwtja6dZyNEDhhto91sBq1GXOEdFrb7HuFn4z XFgHt0lnlcA22TbKsUstuC77pgA9icNERtFPItcynFveb/tgSKXLt5vN0izIxvbXs47dGgJmE2+U 1TVkrk3Sbl03JAAP0eNaZGNkQRsNKtY3IBpuHPfSfp7Mk7aIq/M62LDVKewvGJFn4jTqmXnrZQ/R Fl7OGYr+FrQJPSNdaeM2R5/VwKra3dfm1uM2mSemY0ZVu3dtgpRiW7UN4iqxHw4bjK18EmaHbOeD lSi0uhMZ9Ok2hSMwZrHNtQqxadoT7J2BTLlux/BulbT5KV27kgtxLiwRvRZBa3A6wAQhXVaTRMjB S5ZuxaCHDjJf7Z6TMxQAlkNKyfzTqh8zNt2ROSMz88eEu02Ye2iTP/LlEUYlY6JyRJASED74qnUv Qia+mljWtI1ZX5s5mtAL/VB4ov1irMuVuRTHXcktATpJa+n+QZ62oIbx6JPeAceZFuRklG4Xyxi7 tXSkpdVAVtRlujkL2oXDBrvKURtP1b76DDNaojgE6EDGh63akISS61N6zXgW+OLaKM9aHxrLUv+g vQa7Uc/yAfra5cPZ+yXnuWdzlnZHXup1piS610bH5bSpLPk931CH9JWOlKxLVpHVeluU9U1NkFbx OAet+xPEQjK0hzRzqPU25EDiX2bA3MzESUF3sDeHYCoHby1h/3T0DKnkIqJJMalKU2yI1wV7bIkb q6Q68wo7S2P7i3d1BplHyGqIMRw71Yk0FOTRwCRmMCfWp8DJtPYL5ekhfVwdBmTuDgqhQKlgryJD bRciKI1M5Q5Yrz045lp57E6GdEiLlM3oQkP6T8yt6sgOaeGrWs1iWqu+NtZBFm8zdQe2SuZbsETE CUNCEKKKk8NWPqOcNTDVZm1yGxecBMd1iLyIkRY/aB9dagM54Zc6/U8yucoAEnwYwU5W/nW0nLrT +/+9w4n6wmp9jHk0DaTX+AuEW1dE/UoAF8r2Lbi9vLVyY38i901cFTIt1KBKpXb00V4IKw3TEAqr Yq46bNxJZcNQidOLpEnE+jazXlxXRUQA52KhBa/HkS4NbTGGoFE3oS8ZEfGMggRGchtVczG9OuNc 9Aj094/7/c4i6Jwum7o6CZ9T9f+UThkZ4dHh0Mtie5eMBfzYrw72wj6zelKvISaprua5J50+yxl2 fYfnEj23J8bRvmvCX7HPRYKBuNaF9kVjDTnY4r3PqoT/6WlGKD9XNXCASPolR0C80OSJ1Pdz6aHy n65Fp3894dJTcPk/7Vtvof5tx2cUDlDLw1O27i0okH0SBWcvGNdtHGcQtSzhee8m7n/I+d/r+Sdt a1c8/9GcIZeVqy4IQNrFsfHYxgR5LK39VaMHMYJHcH5+kA+e81PUZsol63BzecUp13pKr+ZcMZVy h6d2hbhCZkdy2DfBxjn4BWU4B296dOkqDypMqQyfBvQN7b9Z+ru9LCsCV/xTMSKdQqVhB0as/kRT KxM8BpDQAcQtm0ajmr4dWZ8xRkucIhI5LtrVzy0ERatQEWgJPhJgFuRKDJlHjb0iHy5V6lpP1giL hC546jfRFk4Yursm9uKzzGCIZ1fHVUZNm2arywom20QYJiFWlvldFpghf2Uwh0EKm51hBe/1BoYQ 9MraSQdY8txyemVeJG791gO9JGPH9LAssi/JsyTa5mUX0mRPOi34RPDaTEk1ncEo6f4LJ1UkR+O1 bvSvEuqs2COwXxgVju+9L5LO7FWAb+fmWHEqfYlwbNL01mQNYwan/M0dv3opPgbNCrjIseLcIX4h 6sTz5dbPC4czyeaMEq4K1OPVvaW40e9vXshmtlLcpQKT/0/iKTDA/G8Fnrh9545dp7iTnMHSNWZT 3HGsAhIZGTd2jfhqCoWHVdwU7tALaPMv1YY0r+cE5F7fWSFWNSNNWa+oCOGho4pCnZiiGYeO77PP o1CqHLoMDHr4Si/AOu8MqXP6NkjAOtf7eeF8yCgF3WzFOvd1H5POK+HzrfPJEhepCGIirPNrkI7L JpUd137qvGep7++F8Db3TQ8AYbDHOie7JXc42nQnE6SfIoYgIxccQuz5APJS5fFQuo3CRMyZWAgY 03OQkcLm70M2MqwAGJBRCEKYuWYCq8H5ESAch75UP44X8H56Y2rdK8dGCJV0gtBVhS7z5VsLQp/Y kF3SKkYv0ckS3CKHmakChB4CCv/5YyeEPjuLw90t7dcpDKDpn99usfqKBRZELswHPkMIwHxl6hFX LTpTkJ2GfCMjzJu8zF1GlAbmXR82qEbmD4F5dLwT+AYFdOOxoC62zoKQrRePuURj/JCtZd9xFkqV KBrRVmTr3L14L7w9wIOuwpwv/XgdIAJ4JXU7xqhhVVe+ohk+IxE3oIWBl9klrl4m3DKMuOkEAj+s D52fsB5umpiIO2uWxc6F5P1mWEfcI8KFVTNcxBFenCqKuEnRPoAX23phfmtprAOxRtzrYe0iPsj8 Cap949K2X9iUBd5H3JyKv09YTR2uU81pz8TYHR8eSqtg/lN0JoYkckRKr3yNidn47lWyGszETPXd z7wWhOlDOxNrTmGsqVdMLO/M+FlDePJZJdvq5pmEY2I6/FmCCiOTS2UWuMLLaPWmmIpE1465Ackf Wby8t8MIc6BiKoTBCp9oYKHIEY25r/UePp9bA7ojkSOVEuai2LYjkXCkhLHDP3gpW4j+/jQEJczJ HQT24G7cnlrCDM/3OgIlzK3IMgb386ZNDdd5cL/rgsaKjV+UlLAG4XB/cjIb+2OoiGGL40061u89 TaoAMzFAa/lGKjgmmEGc9UhHomKNBbtrBz9BVDTt33SCMdbgNaulM8HIj40lFy9IdutMMIvP8fEl XfVOsDBfwvM89kywoFTYrEji55O5LBMs+l2EVuelzijGCeakya/JUJbmIKcakqSN7Ot5nj6IlvOz d1edYLHG1GoI4Ob7tU1B+p1gQuMmzMNs4aMlCZ/hYi5kKz3mpgx1SUUROKjxzGC4ygyhG4TSJLoW AfgQXJv8SZDCYtdHxk/CkzIaazxy4mLmNMcr3kX9oG+KCUCPTMi452v+ymnSDf2tMl7Z9QDvyZym 37V8W4cxeLP60qPonS38bKirMlH0GnGYkqjJmMTDSNd4HzkC6LEMmdHbxCUJCcqjW0G01kx1wdMS eBjoyReO6A1f9tsuIfI+vxm9g/8hRQ8+Yw4aMz6ER2/VODlmabCng/HDit4rjEr16OBCXZF+ajj5 ePEqW/PTzjNl4MklVXMu4f/GuzShJUyvG1Tw5V7o+AgMkNIX6k0qLiMrLufMqp18X3w/FGzf8tDE ct7merOzeJsmERaRsiiJwZ+eWavJOto/G6yHVmk2jExVyqz6lmbMI+Fe5YcGQhx4TjNwCpHE737Y tkX/fqC9nkTv1S5j3iywCwK34kL/usew/JnGlsAi2NKP1tFpxAS9wCz/EZ60NTA7YZg1fdKN8nam nKJPyVpe0T+1ahfeYIhiWqDY7a7SpEp5Fi/AaXgedPVfieKhyOJtbaScs434BKp9P8Mb6xbpc0cx iSMq+67fNBYp3L3xu7cZmeWHP02qNFMQGsB1vy6z83KS896zowtvSx+6nS8HVMl6BAmnudQx9oph ueN9Lvjl4c9/hLtBL0C7u6354Wiab5VJ7DadxyW2dQJI2pu/2BNRWa6j0Q6hZQVHoE2log3nIWrb 9Xkxa+Vu1SijSS9j6Lvx9WG+S0J1AU7vjWJxCKl7vTaZOmpwMq9KK3qrpzl/nihUcOXaw+j96QjN dPz+ziF6Uhyn2tJXazsrcNx1JZ817sbSWXFYxkF7qvW+/3cRs2dMq60b+YEdnnpx/lOyzlahuOTn PEYWmyufpzNk/gwFL0MXsUgcJGIbbazYp05zus2fg2RABVtjcXchYFefliVrBdl06AiItF90bXL4 1FKB1e7Mx3wJhIIH4TAy3cHHIYcKYMegMIAOMNt/+FaZOf0oSl4JkXZKQ8MvLrvDzVjaIccu47f4 eZhpCWusQwDH1S3YtoNfQu5rGVgo5FSWJjZdE1Or+WLcC0k/ISUc0RXdWPuXfG9wiNtDm74//9oB PYdu1+WmDuML2zLmDrYmz4TWxLVLZzJXpGAF7MNQSU7FzJGYXpPxvO5quuhekYweCVbRJq7ECDsB 5i4UG5AfMzGxdErxd00rLk6+hRC7VMVxb0vSKWPhwnsKqKuoYir10Sk1QSxVLW9361mLDfC28fgF 4TpDPFGz83OvgLry0Shi64y+QF2x3k46EHX5PelPBOqyyIRuJVEA9NGz7S5/0JV6JHxEUJfrWuZc 0ShGkVZnXHRAYZ8Q2z7zma0BidsUTIzX6tDAayBehs7cW2CIcci3irrlLAEFRRl6xHMrNllW00D0 xUWf1VQcdGmepEmS0JiKUYZNuyP3E/G78M6y4v9tRfRcI6FHrNh6iMEcOPoY1yg+QirPUwNXC7GN 4HzFb9m9Oyw24tx/MBp8sZw/qbZs8VF8nhH1MdN2K85XMYaRmUz0jJV+F2u2kaXFoCxAtOTa7ghg D2ASB8TCjhSmnJmViW0IjcrhDWKLh/k/K7KV7Z6OG1YiPFURuXAVZ1cVaYLdViwh/dgDis+M7beK IP9w6ouxV21DqIlZT4EAYRokmKYUU0Gc6Mq7gOmoNJCqAfXJC2loMi0PLs/BW2xrHT17+6BZBW5M eyGLmxJ10Amlu2VsVu+cIfRhABNMUpB0fyLf7C4RgWa1V0xBUpmdhBUVaXwjLeE9HST7Yy1uEyQN MQPP6GfejPcphoW26RwyJFeK8hMBlAkaMsgnUhhXin7D/GJg7XmXohgAWN2uKKwKu9PfGYvWs+Rd zT11GX6pBl3qspHsmX6WjSd6gu1i4zBZq0+Uurpr5J8f+uB3topI6ljqYtbTEkl98F2St9SF8yiw ldrJ6tRl5Rd+iaUukx/Gsrxh0phjLHXZ4A6OCXDrU9d0SxK2pS593FOkV8zQkR+f9rRDIzqX7uOa LXk2o3EGPHjbmLekQcdSb/9B2KS4BRM01psMmaIHtjzep0RQOm9t21pDzY2Nyv31spFAoF2QHDV1 MBcRjuJhGiINn2l+2E40h27vt9r3ZzV9AUwAXoznct1rEUXYKXPOkWpenLkqWj7/2QTdMN1BuN5E V5QZ+cHyKivuNllTF1WgUVtGS3uGjFFrsswLN3rwnl+7WSBS5ftrQVIlL7Fkmtr05IJyaIgPBnRl PlnwR8W4+Q2/T+4rhl5Xj4RJRgJ3b7Fuh9MhupF4W1t5Nz3rWCdOPdPYO7a09Zeo3EPMILsjqbUY qQsCTr2axxUiPkIhHI7afpIuqyvlqNHW/6GNgDXfYuMusZL8cYj/yVCTnxiHvcoIOsSZGtBikpk1 oOOsA4uqxRiDzxUNx/RzQdtpnrVV7UynJHc24ux5hFAtoOo4P93x5b8+T9fY4DQPcpblaCZ7HIoU pXV4MQ+EABobE7LPt4U7ugO0V4V3+0lbzbDNwvvWi/dTcPicZ1Gwcplboh4Aw/LdwxwaH0+JRImV KxDF9rDUBsdf1o6XqZ5ngHMHcCrS7HSP3+Ts+8yyynioK2GGNZpLkaJEUEH241VVk2PZG/wMK4GF l90h95w+hrSOK66+gdMar3secIHnL0n1+fID5vWKUs+1G24LsMIzx4J8Ea7lu1eIdySKXMan0nHk p3Em4uS0euMVruKeqCOJJ5PniMi6rK2JwagkkGTqPJiS665xolLdHfPFjY0pG4N2usDIIn/91VPU Y3OZz6DYIXwHSZXNxR08M7wJS4btchNB1fufMka3SmmhT6c1V08NzNkk57ieu2IkiysP2qRMVF9v 4m8FYXkQt7fA8cwk0qLrTQRffW3vm+pgxGjhGYaImepi/zGhALdatyyJsbJQINjHKqakWsHFRzIW ntPrCowHIKJbPx7UKvqMUz/FYlbQf/yHR6lUZHwIUhK5MqwM1+xZKnP+BaElxn3a+Xi0bc8/9iSQ uA6Hslz4ZhiGXWKwBO8R1V0LdjIFQMUPrEKXDmBfIec8v63xXmns5Yqwn5AVRbllOnMLNabjQugx t1Y/lFscFW25TXMphnIrS4TMLcNfW36BcquaOH+7gFq2VrUW4iu3uGiX0VuGpiTNzC3XxOlXKxA/ 8b8lqCi3gB6GuaWwASBNyUK55eIg5hZHVcsvcfrVCgSZdJlb6hekQOYW6g+Qciv+XOr9hYNV8ZNI iYHanLwCSC9M2e9JctscI5LqdWjj3qIJH99fA0kCFdYX9k523lZeTctB4DKIdl40LjG6c/c/QWjg Jrd+RqT5v+tNQl5AGTtgEmobXf1mC+7Nv9BKtnYbB/ZjJLSM7U5ubL7mHrFlxuE7tUDjzRnU7KEX Axj0t0J6iNDDgjn59ZZJyd1Zw5ZvzaIT6HbomrHTFEKj0f4ty8MJ9F0NI7u0MwtAlEBLAY2l2gDs +KwGnWyeBPq/dO9u6jn6+C7QRa7kBa6OoYBUKHmV99xMYzoegO4C3f8+Hom4Euco5n+/fQQ5AiCZ 0GXF365LIqwAG7s6RbtI11rLLs62xbrgYl5MZ5YNmCWLUYVYzpR9ssQ75dhCjCiIRg/Z1QSVVf0+ w0QNoqfL3zplQ8xSpTMQJLyQhPtFufZ+3+zLBIfipGHS5zENcJZYrbmU41pGBrrXza3pIdhewc09 v6xiBrHD7j1xVunS/xrE1hPBKP7ReE0RJ/VV6IqDLOXVncGyyICKkylyJI94Sq8KK9y3QG42qWxg QbXh+UIsjPryoIJuZlv71YPRknxqa1CQA8WRlXc4Mn538LTVLEii7uIQErP07hqiFuqKEFjn6uqx 5AN5G9rDhJmDSvFC2lUhssBb3QJBehnPGICCspUCTMPro1081h6v7R3+cH3Mfnh9ZM2OVRjVhLi/ QJfBDcIqJfSNs5zv5C38p1VmxBEuh6kjBH3GEQOibiXI6DgVDnQE5Ql/d+2fKKw7wHSgW9CbPtBV ZBA0+ONHgKIOdFc3dfRLZncUitVQjOqR2J850Fjva1XIwAIyKzrio5D2ASACBxrnkmH8zwB58wPJ apT5d6CPUzsEHdEzAqADvWZCDu5rrjnQbNpLAGmACEHrx7Kh7K7/J7v2kkoWPpad7GcQMFOYpKUK IFoySKPNziVEvLstx0H0ZdYhXRAaOXdnS3VRN/7/owDVWx+gp9IzNwFd+iHVd5BxY29WZnApVY9N z/1HpVjHXEXibZCGYcH7vhisCc627PYQi4ijJOBWEOoRFkDVl6QJ0rg6Q8QpXo4NMZjeB3mGTDMl BbscrVC9cus+HoyV6JK47qEz6dlNlWhMJ6yjiFgPK9lTedqjeN3jfa9bsf/tigixgw96PzLuFvC5 LElC/oiZgg+TK+mEF25WH+cNVs82lz3b6rr5Q2E1qOqWREXP62qsqnuNlS3rxZOIFHM+nzDt20fe 2J9fTJS6osRt2r7oA2WnjJ1n8a7Mew0sh+1JugDeW+YYozDYP7KWTC11UQ7guh8Yb3nfP1ANWLkM AyoXlNXiMlTBwGzpwPOQ5R1WqDEM/8egYgz3vb21Mp0soII75B/utQLaHpGhYWmCt+Bqm/a7o37A cv9LP7KjyHLu+Y1SahzI2ATRGt8gcHQpseVL1it6SWCL27bxuMWXoVOaKmPNKyteeiVxsqHEtUme KAIa4SEilNgeci1S0Jn0kk+e4AVIum/QgRRQV/XFgCFB8ZDEMVBT2Qony9gSoj+X4xid8XAMZmWw zFg/URbe4H723IurhR7uaXTsxun+LvyM4moIraEsjInI5Jjv8q99moAvc0cJ4XV6wfzf2mozKxOB yK6tj1x1hiSGgjqrVOQfiePihzLyrX+WLNCzS+vnioc6a28ZJ5dLuBlvotAiqDOSbXevd80Qj73o k4o637tQKK86j9YsaSuBbA/pOxKqcwDDlrxoz8XnUtSZxW/4/RP2NUuGOovahp1mDHT4aXeFngjT VyOgKp13lBQQuPMqmJDQVUaEqvNSg3OvYNiCOus9b6aqc0ffP6iizzCJOqNOUBdWWHkZ9FVo/d4o IKQjeRiQex+IMZowDD+YAycHv3cbcDTtVdP2e/cwDFIqnSne0SSw/cv49BbV/jva5J4F98sNwsHO vM1KOBMwgh79JobDsj25b8IzyMxdpoBrUQKaXAU6pAScBDSQZrrS0Xp4Ft7/Kqwc2ld2E7/LO58m /wq1qFv0e/l+wfb6DXP7ZOEJ73VyMZ7ESvdD0FNX3uQQyPhg2ft+y3zmdKrL3aF56gmAfgfuShtA QzN1X+0amBE0KkDbHvD0QxcDSNZ0frY/iqRTNZ/5hRrds9D8dP8XhbJ9K6GC0IxcEuL905THUBD4 dMkF6AnCEidlW8NUImN5HI24clbe1Ynf8tAci43yUN2J9hKim9XknpoVsRGaN8Dle28Z+n20+MyL Yba0a5ODUDl+rNzUYV3+M6cgNLu0Lbq4n1nFQ7PXAPF85oT40Ey6XYHFEpUYbczUKOzzMxuh0MwR wOvP/Lp6kDVYITSni1UIAOJnBnKh2SIAelUEhNsemrcI4P5nJuRCs8Lylf4zW2W5tSk061Rq9eTP bMZrdkPzjfV0dwDXfuYXHZrZSWDQZ3ZKRmimX1WWjkmNn3kRQ7PU5ur0Zy7l1mpzaJaOpJ4wwPNn lgOhWae9DPbPXMFvGFlfGZodzRzXodRt16eR17jQnKVN+mKMD8RP+ZnnCM2SxoR6vuEN7ZRIaJZq zV8+lg8TYtoMQax512eGhkLWTGiexU6RwEgzNCfWZquhGOcWDRSh+cxpgulI0Y2mikLZvpYmWzQm bTJ6P/LYCXfPwww4lGgnc0HL+wrvbXcgev2Ab/0yQ1P7wvyAxSQ4UZXcwbRWzdSsqxpQl+BamcW2 436W0frivfVMUL9o7y5igPfU0uIAh+r+RRe6yRrQOyCZf1YNUz1mFCCOYiX9ppH2uoV4a167U0wj b6yqZg5G0+uyk6Ztiy2HlkyrmbV0JGLRLTJ+rGIeWT70aTGwU0xmf4FRR0vGLSBp6Z1eIeg3ofn6 1FCxGKdMVhJPzjrLNjpt/fGOnsjIG1YrM1hVU0cQdrQ0IWnm0qnjUTSgv83ek98JpGX1Mw6KlKru E4vIG0zHgn3TTKmmoRRad0oY9MZ2/wcV2utBKxKU7KIYlay5I56i+MyyVrAHj2hWlOIn2Pm9X1fJ 31F9Um3EyEU545I3t+wqOwUxy1wdE9VTUa/Cci7/Gqe7pBuxRS8MxY8rdothkmZJwTT/G1tMpJlJ 1aQ7b7U/nDrA46IVmwjTTPJiGIgBukqREE5MaTwZpDmdZoLbNG8aX56RAtSTmJrm2fxvDWkmJV2n INsm2vEV64YkOAihg5jmDPDurbnuj0vubQE0zSvktxs/d7xI+D1yI94f9hEScNC+Na9F9ebZ9zmd mDw01aycl/FcJ8pfnscVX/p+21fQhVrt2EWUXfPn4vyLN7uly7tJIS01NGJ0LFfWsmkw6A415eNQ Gm4kqRYak+o6naYmRH9IOix2QdzFgbfvoe8c25N7Hy9ICGLl4EzfLN56y9o47V6xoiU8xPAkMUoH cCs7vjgwJczqEDr3F2bNXQDV+2EiAvdYTyk+Aj0IBKsD1t91E8Vwh5qlG0cPrxzZzk2jquHdQ1tK GUFdOCbzMa8/MpehFWRRlY+BTqk+Q5dieR1ZMJ0ugkdlSI1p+F7WdFHqwbpTS7C2ytvKjSw5MTyn p470THnU4uJZF+ul6UCGSHULNEflVru3wyyvvtJAhJmyyklGaWSKsIt9DFZJa0+nNBXLvLUQm2P3 y9/NdMeYXjlyLCv0Iv8tq5arF+6g2lN5F0nsfa8nlC6s413u7knYHhlGt2rp7NFhlzLM1Kkft2By trReaeiwZxjJat45YKczC6e4uTL+fcUQzyAz1gVLWEpaxGsKSpkmwTcVuT28MPVcAumcGfvMBd2V DS8HowrfAJLZVxuwVHI/r7CLh9mZuZQV0q2yidpsyfpwXWhfGWFkKWvzf00G2qHX1UQ+mxcI3Nsp gmixvdGRpH0qMhHWA6kII1wrPLh4i1NE0Pr70nBHkXG2RAvzFXW8WlVrcaXEt24mhMcVd2tKmG3j EGVOCEICiPcBuRGR4P5/FCYb8X3STPxag56/OZbSDDfv2BP78ebRTl7bd4P9WN1qHaSJxQ1as4GF yIDPXOJOQFi9c8Q5xiX0A5m4hikBJBcvKV0ZHhgaGxgOcEpILfxgCL2MmRm8WoYhG8ymlWuCWx1D c4n1rHNQ7DwxeddWkQZj5tJVckutYTNwhnalrhQKwSa5Dxy9CI1M6A/WZ7B8wUMI8peK6/MGhu1c DE6c2OZV6TVKnRy3Y1x5lp+R+82+T6AzM8AVkywZn/tXluj1S0QBHr5xqZbT3KgCPw2F9SZID/MK Qkh9yWKq5pkaN1UOKBVX/XyrLMi6pZC9sJCOwWHb59ipkm6TliMF/LKTmNgmY2I3m8172gYWwF21 kmZzoeIgC2LN9kfBatC+hO32qw1tgJpcDGc7qdG+XqV72eB2mpzzs6iUKWdY3xi8LFOm+CaS+Ad9 KwdZgEu9NoZmKTBm0kxpbW7bH3MmOR693zLjZKegrAPSvPIKXAhivrxpILEuZjLbPX3siJQGXbnO dF7xjqePxenbgpN3ys9iLuRTQ+VNJAAH0wys4TwDBBBtlE2CAEfLiNNZEqrZCBZn7gVhPkcUrYUS r7WL8qhczcFUNj642JlrPRjiik2vgLMoe/I9rjzYVv7hRYwLyQWBb2IYJ7J2NG+NQOKWF1YQCpV9 RlzepizIKyCFxBt8IPvNjhgP6l+3CoSd3Z5tnFvsRXDwPI4PgWBfjVtxcGJ5MJBNZi4dPJ4rywIs UzAxDy7SxW0T3Sl/6oLBiU4vsT/p/Nu39Lxh1/g2M30a/19A17Yi3t1eIDskDiT6ZxbmcOG+c9V1 3fDPNni9CP790ahy5z+4ccAivyTW1bzdiFgXZs4n1vNhPcV3dHq9qjkBt2km0+6eD/wSRQZmlrTP x6otwgtE7hT0kZwighYEo8DvVU5Ik+KLzCpj7r2+mJCSB61rCI7pZFpV3RcWIZm+rPAOf/KV5v1z xrSw/sg9aV7nDDYkfvHM5QBCANT41Di1oiRuMWgrc+laVVTWgHDQadpcirDVCHA+8HGLyHhqPsRb K6FwwgorZHDqO3Wxnw2bmnu99j0Xw2HVF7FMkGOt0jMt9K2HoWLzTHZqXiG+9bXiULsfkm2G0t1M RVdq3rn70QipBrZuod9nJBrCV7N+aDtlp4fPr508V/KAOPVLjQuFH6WJIoA0DNYdEooPYrEYOiKe 5ZkYSpNYvbCS8Cv0L+qYbMDD8hFvV8dShGygEVNZymzJKD4fFqmN2GzfMOK73dXDxj2KEa9NNkID HbvV4slmynAfX068Ew9LMGIjMEL2DF8n4wNCmq1vh/Bh33p8GNu6Rc/67UN5dg8/Sk3EkA+ZztE5 TimujQTomQfdBNmSSBbjkFWKjw0Bi2yoWCWSOYAAsDOhUgbi/UMW4CcRAxd6SzVOEpD2DEr/AMqi 1TapldWRdxi+QyvP5n1nqoXkI4efKd0LN36QmKUnZfPdEhmYVJgSRm4fXs1ZgsO/LKJs563dB9C4 G5vUvmk1SZb5Gj/51Wwt94TFpxsbgdIL3Ii5B/KYZ36S1ezw/w46MXE14i1Tu5r5iKQOF4+w8FjJ AlPppM2mFBbaHBOja7TatpqtoOjGCZpQwA57vgf7OzvjZxa1vrB709n6CkIvcl4NPhPFYTQZdrHB t2jl11ZMbqiSMGwZ4UKOxH2bAEO/CJnlTd95lAObnZGVCwFZwIjG07rJkrRQfmHwAAzsVb++ZpYp j57kFigZ+uVWuUqgZPRJAO6JLn50mq9zlcxsomJEiDfZrjDTP6nIszKzjOqnPwnyXqTZLsdObzrV PGtZwqwH+BBoGUE8a4DQsuw+uQKynbo38apy9fsFHY4SkB9ppSaAMlwD4FNnZWVSEfjrSJBf8CGh odawGqaZ0Jixfl2fPINYw8Zu1NjFd3ZkuBVuZizDvBifeQivghLvNG8GtVLEilm5pzYIXYY/wNlo l8pBSE3ZatEsQIRk8exHnySeGgPXzjqGoCpllj4VELmBh0sVTQ7pLu0Cj3oZK2oeBHFosnn+veT2 V6mOZeHsXfazpk1JSPoP5AgvgtVlQuFY1J8MTJD2nyCrQewumW9arS5prOos0Kg1QO5UbDM0nwjM dC/TXHAZuTBPBeZ/Xa4FAyxbCs0mly5DbmJQlnQ5sDkMTzFeSJ43m4BL27yaiufFzoXyFxC3gdLs tu2heIHzlxu5SK8lqFAcNQLqA8C4FvUJUkkerRtsloEg9zMOxOzUjZ+ikijp9wOwtEQzk6ehFzQM 6ChfHp1C0F8XZt6bo35/qUDGVo5EWFGvrD4BnxloY817s07lZBhkiIox4PjppwSguOy4VTDgY5uQ vvVkawpphEE6Eg0fdZafHGkqbWbON0khUO8SjfPGj2beKlpwYAexidFCtJJXWwifiv2oHRxvKIln 7jX8/Nr9xZcmr9dYYDFK59auqZCwtwox8e1s2TX267EFGu/KUCrx29E2dNclwCpw+B0Pa0gHLOPz x0iNwaBdPIgLrjVzUscBOzzFWcfkfs356AK+WVyp1nmbiaSKfKYLluWYPGW4HJqQrYFurOA4OSgq FMAyWrZ4Jg0vOcmw8zGrgvqQ/UYzagQhPZqGXz/2mAQ7MUv7YynlOr1ujzYxyVf76MeC4XokGzRO U/gQofek5jxScHw6lS4KuyYlYyNpBquZkLCGDpsJvIMrlaK9RernXXXeo3DXvUyaG8oE80ZaBDiW zXPsl/vSMak1IGDE8bsHAxU7q5GBx6B9VGMZnKktDaiy4WVCKSwW+S6+DP9fubI0RADneIGjWNMz bhYl0HlF/0ko7m1m7rsNN/cP0X7AcTXeSijCAJurVkTUM2PsPR4WqShmAMm8R3xAaF0k+GG9+QRM bFI5Pbm/d+8G7juen6XYcwBdLIf77GGwPB0I79rCAzq2hC9qTlSvIJibjqek2P3/LDxVl7F8W7bi jASH2eNbDG8xXEshHgN9R2PsgFKVGu1ju/ss0rYD078kjro5BZKK9mLuZfi3aXnBHqLLZzd9BG0i r+iUV8Iq1ILLoynbEbmPzggrEImP28Z1HbArGq1Il8gDxil7S+a+WfslbfJiJEPJKopb79ORcqdo bkWBQn9iAVEl6JA1wEAUSWVLBH/495NSjjTyluIwUKIGswBVLcMimt3Vvs0BduTUISSLH6pMbN1L qxngH+EpFwdxcjHJkCmMOPpILAVVDUCIxG8zfPYNwlgrUuvo6QYeAjkVD74/k9au5xZPdau9sYOj bevA5b1erJSxOOgju2zzp8e92qc45011cl2p0vb0X04/DGfLGo6ndBl1r9pjFvjjZxf43mXWM2zv eTG1sQYHHh1KqTWw8VYKnsq09J9fxhd2Eeav9bOtVWlbMnl7wbm711ZsQH/5INdNk+PEL6jkundF cK4JuvWWVWhmKjS4ZUzB9OBOIvCr5RGojMy7t59EPzJFljHYw1Ej4bEj8k/Pn6+0k6bI3VtcVpvA Y1qEKmnp6zJXeHeRVL83zqik7NPbVMfqoYe9R61Zz/Cw21OsQv/G2sOsf58nrhHqw/ouvbBo+C0w 2xl13w550GUyNf0+AuG0lYwTz64EK3QkMaS+L8lhN8BVVHFiYKL0DiAJibG0K4Rx5agsj70ujAf+ fHnUkKvTEHBcgvsIvZOGVAxbXstLn6/UVpEbb8tg4DIBoAEUak6zzqUE+TLcwl4exWddCvSy2BHG H1AihXqjsike6nSP77yDfTkiRn3GecsnWTattjM9v6mcgvgMFNEvMz4MyDcRG1rHUMHZjNRDEwuV GbhIo+CxAdAQZTD0lgX0+WNWfqYaut0baB16rf+XjOlXLXFAckJ8qEPOOjoV9XBEQSgYHbPcxrvE VVYIsk4RnyxwBAyTAOJ+/1GZAJphcy9je8Dd8BpDYC2is2DCSdSNYGgEBYbX0ZbZ+I6iiAXovaDO YYs854l0M9fZWAp/i//P5GpbiOVA4aXqdZyR/4gLBfTZ0WaDt3eACI18c7B8RHIQPtzrlDduQgn0 6Enk9Frmou10+ZkU3SDSxmHQFysjDg6Exv0EqVeShH0DWtIj+fyrjVg1z4gYZUb7mgn9GVVgiN7r y+B4pfJuBpUDUGWEGdZcgdzLAzNDYqMbxQuCdUQKI9wuPkHFwSWuqRd0yu7tjXOBD9PTv52iYvmP dm6KIkyKGwn+hEl6dVBmCqw309103ausN4hLF2hMUsNNeMvaRvZ0ZUItd83OgYyQ+iVAnAurvQTP 93gbk+j9H7hC1HKnUiTT/KJQMpzJDaWiBzRXdJOep4h5qfUbGdsNF+/yHZPBsBId91Jy6ogKhsOP P/iJ7QImOut4f+LQ5PgooOB68vqS9ZmimF11dEejs0ytYMZ3+ZG9EG0am58gqOtop9qetqlqNQfF jN2i+4q5GR+wKLsABl5QpR7PNKumv1MuMVQlL68lB9DrTqz3U45q+JI4gb0IMVlis/REYEY6b4dE MxNh0uZ8sC5b2WlUlla+Td5rG3zk24HoEW42Zj6udrvopFnPHirOIwpe3OZXQ5Xb+axRx6L1HlIf yv/CnlDobNA8tv/Wu1IwoY1KAK3xlJqUk82b5v3zDp4aRGvx/lVOvvMjKH0o8spM705qmYdpd3Dz e4zqS6kA+aKLo/dVd8FMmlYCQlIRT0zTPWaNlh+vT86gmGZAhQKVNCoxV5R4WqYs20SubAIw3L26 0byS64Bx4IIFQhSnsh+9vaZhn76yYHOVVrsxJRsLWksELmEG08mFCP+ACiQeKM03Lk505RguSY3c 51VClQNekW4Wo9Dom6zmSAnRntRiRy26D6EoIUDmU5IhHGqrd85K3IBxQg7UvOSae2MLy6NgEOmE a6IpUa2tJi+JaY/guCXzk+srRCtQl8TMBzDMWq49YzCp2ynly74xsr/D34SVBN+zM026xRK8RfXN zljjEv8uv9AAVHsVCczU92vBbFm36T+G2isvxary5NRSDLK5iktaJDhdUfKTDKnRRt/9hOWEjfij 8w5BJbWIyxlsQ1I4kLx8HgCFtNgH0JSA4E4pNI9fBSWqodL0owzui42LYqgWmclz45WHlEGaNFMv FUoQaWEwBDo7vUKu+t4XVEBQSb9oejsvlnzGt+jqS04m7stg7Bh3Kuz66vmMt/4SmHukjcpSdeLa bf2SC4sK4qtL9EPFMl1AAbqJjsZkjo+PSviEyDy7JyAmVmpc2VG0GKwwtBuV33SuoaZ8QGPdWIAp jiw2xLAP5dNr2swP4W6XKuAUDuzfBlCkX/MFNW2c0t2w/+oWDBbQXpUKxXJQ09KB/joaSZupFhDM R6nr9ov+Dw9UQQ1CbRa0NzhOgkokt5IsRNXJDQ4oReFRb0ohGwPcnxWY4syo3SRFqkmCPUrKjUlM j02TcUJ8pGNX7cxk/uAEOoJR0FpMG1V3/UiunZvnHkzougAsZuUMEcgvhVudJOJDhFuYoA1XMxjs WjieEDnmYCXN5DcYQ5RNn1lf508x6bOEKx8mUG4Yu5xrwi9RfiBl7lAUlRH8GtgiySgihnMVHy4t fk8Klm7owFKOu5PkQGk9GAOdKOVxCZQVXrEP5A44kQYu95NqTJJB4Rw8HCN6xZYq8ly5QJKQ4oLB vbQUhQQckeiFO6b1MlU/W5MT0OsfqTFdC/+yH/yRK3EgcA7qieDgazZNhDpjsmOOqtmUUMkV68dQ epndtWE11mzEgRJ9fwKvAGKS/3x7HB/UPODA8M26gDsUC5yBWT0PEKQEFUNqRDyIbhicjPFX+mHq fnBBkxPs57gk3cILip8bl0EY5gscJCVelGBLCNcLurjzn0sFTC2WR4NvrXkY3OotzBySiu7YH7hd +0eWSQlgkaHow7fmu7Vga/bvMW7/LKxiLK+jGRSr9f5NXNLOGT9bSvj//aH+iwQQ9x1tiE+wX3CC 8I6YpBEIJnn4TZjSD3kSuhFx81d605geJ1uHm6g2KK+jtkzPuUXA2Mrm2z4sNZdkTjrjkNoPr/hu HsAaZk/Q7biN2tx8NbRqlkEXgEoAXi/UD5Z+h9wsheZSTQPSLxgAkHSfbBj+dWoVMxJ19sKhSJ1+ RynwvXYG2FQ1Le1s/n7eBNqpNFVEWjiTfkx5g0xeWNXqSDDSwKIZtFgATlJP4ANTLbwGo3shglyo CuVNsoGMVhgwelTZcUJKPKZX7pPps9LxnHdispA0xQMHvAeEW2m/lFBcKrxlGKkEE9TRNjUU50zO wY/br9JRD1ywWPy3ucjF2jVUqQuJrkNaAeaFJH76493eLLUnxkRvIKRiUIabh8nahAlxEz3GmSQ0 zlTdNZfwhJTeMV7LegVrAvC2iJKjszYbs1nMT+d9mYRGxiKdmA6n7+TQH8AgkNg3xHVL2KC3UWzA GXlRXgiiXKuZ6F4idDH/z9MEK5QorY8RxqJ1An5n5CJMkJazydFt5jmN0tU8JDLYWlloIcWeIMxx E7KADxzITGK3CPeCYeqCVp7IvOHdD36JNAqwAwhqdjPo0ZuoQZJ5cqW0nbunmN2OGrld/Y+zJ9AK 8GeQyoJjgVGpnY+Fs7ZNv5Y+lmoB3XrDmvaAIfdTTOnIvqd8R9KC+1q44w6jntyMpWJZt70aFR7L lCA9nggmtu/mLNzVX3xv1b3iKFhfV/TPzB2zBs9IaPEVTSQi6N80ShNhA7ER0sIHspJPiUlI3wdZ Gt0C961Zh3fZ4cZvVe8AkmDUqjGbr+qzjGCb2ZFnjRPh5+LQMwCrOhxhAkXCn/rX4ErsiHzTM0SN 2P3BUrOgWGis0HieFURo/jyeTT7epFHk5WSsUhqH1742THYj1vrzCLqflrDYvMoaUIculyu6Sw80 83UlnZ+t98cgYzz2JLkj5FskowIfBcvUgYUX7map27H2udffBld6qaAI6e8Z3zDuEkvA1AezneBa akHsDj7mh8KGiAORcI1RFs9oUapZQExSxoSRDJfKNQO+k02Oyho34ygMANL2UwrO9Mre8qYeeV6F Xw0i/bx8GPwVSOF3nzX1KeYhTH4IeJd3DYJrb+0i3E3CHg3K9XT3+KSeg97Vuf5RcX2mWcN7OHvu NPOZhWcBth02u8sWZIxf6BaQCNrr0ByuklqaGXmu7ry3MQA6ox0r/eXa7wnxL1h/I1h9m/8+f/XZ H0i+16Z/ivFVu/3Y5h08/v5dsX3VEa4rOjh7KFVfg+nqz8dc7jB+SuEaS9w3dOCD8K4CvyV96A5L 26vZw8auz8g0kj3PuN+Qkyhp999/A5Bee3+i74rRFvfvb0xM3N/ib/4JPIRhtjNoqKhp/FUq1xo6 eDV1TTQaa2z0gmKl+YoSV8MNBfg+4eT+eKAjYoAsjlhgU7uQ9Zkh2QUKgMNCBeJMqhPgITQO3ch9 x5kyCGf8U0zDerUcOXjxut+BN+vd3HUQ7fbJ0vXRGIEBWxymau1oROyFSsKYy8IJY0kBmlzAN2oB BYtLdQJ4D+4o/aHy4HSLcp7OXI0dnyyg1knskXsV7PajI6Yl13elFsoUYhDQKYistaECZ/Pq7Urr 4M6PGwlm9AIX6P+G8MAGckLrmfD2zw/pokac/xCwCeXz+pp8zcT8reWCBOHLvMooelocIhPjtqpG R4cqJQYFnH8RScnLMyLAWG/qWe67CZ6XL7VpGXFEPvvdmgu9vvDnqNU58nV6RAH+rlu778gl6zQR iMgOpyU2wscEHn3+Q2pIlemXyMTXFlxNPnApNkKNnThp00atQ5pQKGqG0AUV4qhYn+Z0bCmT+0cO igP2366zBbpR8Ouh/slY3l/BDN+vF91/Zv2Ncy7kjU1RAAprSBMroAxPG8C2hR/aPvUUTzwolHmF 2g6eZc9DueyurIhk5dP5Yrmn8DrMezle4XABOAHyABuhjGiB4EPCwVEp6hd6YSPCkqFQoDgYioYD BAzFYhUDGBaNSAdDUyAskpfinfhBhzE8K5Kz58GJTqpwsTA2Jx0Zoe64jEo6FrMYw7jnspoh2mwu 0UZBNCERCKYjsjiILs5GM8S5Iho40wngADKxFweHSkVEEVQcZ7TJzE8mo7AX1OqklQaK1cg5GpKH BPsHRAOPUgslkJTFX51vMRCGjYai0R4N5QHFwVAsUBwMRaGkqVA8Oi48SBZkKBBCCC6UBQ4CFMDV wdAWGcmeCggkuxMgIJnVxNg8eABgQEcACYdoLcZAIALEC87eGX2UhFq0AeDCY+IVGJuFDZVpJ5Sk QB2gMgM6HSYMh47H6MDJyYXnsipdy+BhDE9JA4qTOvAOxmaAxIGQtZjFSEVJR+NBhIBHQeFBgHKM TidVqIGICccDy7RNa4WRcSZ4KI4ZMW2KQYOzIQ3FhkwUSiRIPjwk2FIh2qgl8/GMPJe1ZIwMCOAC r8vvtaq+zbfemN85j6r6MJ9rbtb4nPrPl7/VpTb+Vn9w1z17c4yuqe3hOri670X33KY2GOFC996f n3ud2r43en/kXX2e2lwXqnPH8KPyp7KMpmzlabpMgkdT5mnKSBY7UXlI2iylSnNooAqOE5VnQ7LY hKcpM7mapVRhpqtpU2/a3LlF3vZQxGSCtJv5iCxmMU1azGIWY0iK/ChQBiC3OZGcLpfL5QKzUVap BoxADRTLaGSxWDxGlg+LxWLy4UwFQBRaqVSsiwnKIaLAClSpWKxSsdgG9QttsYYGSsYDBdq47jRg UwWDo0TEtELAGAWUxS4PShaUx0Z1BES0lVPGRqFEysINpJAXSB2o6A+nUq2u1AcEhWLBBh5omBJA dAgIoFJ9TgwhIhMFIDANCkIGQAggFj5EqogI/P/byc7s02JcuOv/v5vu/Y5bbytHf/8dk91Bx829 vnfR/1fz21uE6u72/5Xzn9mnbbtz2/BfP2H09h4z9Bf/udNht8ix+Rf+x5fxve1H2P3+P2ryd2N2 HN2/f8epvLrP8f9tqnup1v0Naq46dtFck9DcNZK2zaItqC1bedpvkJ4Cdl3NGf4/l/zcfvpjdrV/ zw9h/H/Op90cJnTMrhb7PbrD/9dUuI252dX627ZCZV5Vdwmj886o+1w6P3a5ztjs6Q+yqz1/DH9Z dTl5Xftlxw1VFWo+hOxq/Xy9Pf7ry/euqXPpDtn1z7nHx6rv2fxYqgUslDFhWZbFTiMlBxIaLFi1 k6rByeqkGmmnkZKD00mpnSKUViNMdSphUFJtaDSXAucgS+n6g6+qD+Z75tNGFvL8rBphrvbLjSyk N3KMTlXjv4yx1+2/6Kv6YkZ1LARmt2sOc5ehZ3QXczvVHOZzbg4zQudETCzksWuxnep3/rMQ3+z4 Op8/FtL82jXr/zenvjfnp9+qz9mdeq/7uQvh1Ia7zUBsggXYpb9wH8f3DznVuU7l1+4+vo3//zI+ dPnusQ/cVmXO996/w1QHWz/9yM89dyxkX/fypj5sMcLkV/jYpzmMz2n8Z5j7zXnbf1UhTGZvMT7n qb8u/XVzriFrhP+R85dbO38agguoMozSKYZkREREJEmSdMIJEojDOJBGSQ9Z6QESQOBgHAqiGAsp hZAyhhBCCBkRERGRQERkpupIO8xe/ozLTtCF4EA9PEjgS/iJ1AXkU4SVnq0YNqYMiEpUnKXWbQ+4 yxTkVix7wIO412XEtTjKL3zlKxE4macPhvwZl0nfCk8JsjF95ktGRrqxRRNfO1Yzc/osJj3jaj29 sEzYiFyWoIdrXby45Dd6lblbUVj0M9PvpZOR5/Ex6CIan4/7kzcs1k+ZBZG049SisOufOaYGt7+3 Sn3jC4LEkQgBghKySGWM2XsmJq/PImQVNhpysSyadP/5kWnNQPXMGV0l82KCw4FdjLoSIO8xy+6M aIcEhHBmVDMWoeSbdn4cnnkMpOFBMD+Cr5iRBUExxi39LOvBg5alFtF76faaPpjIp2OVCK3a66FX FvT4xwNXyoLAwWAHKoh69eM+fWkW2gXdXEg+8rkWxntO7/eJhdu1R2sUAEhsqm/hWGekABfePpO1 OiDO9+mwAJACF1NEfFf9rbhlBajUcwNXZRvQL73Z3jzEH5Ik7jRt9IvLw49z0SAQtIkDLecD7mo3 6IKRhmZUGm4X569PykZOr3pEJuGvY+PVM5zirr7+5DnpaJJ61ZeDo4RefXSZr1D1OtYAlP87ZYg5 ChZR5qgGjSoujhK+Poh3Vd/sUAz/tCg5SkoAskPM5CQpzDSDOSqjUa9rwjVeOdlKh1LaANX4c9Sh KvEXlbQaNVFzFPgO8MsUViVaouvzd43ePs0z9neWLBO+yAst++8rn+eeF+mc3HaySbCPlXwrkOzo MII5kX2UTx+U8cuSULfyiBZGCaB4nFaNGm6LY0biN3nSh5fInEEs/v4MhVSK87qcAdmZmomFQXmf 6lAtFxqjvmcsOEICZl+aKVV9F9/OqDxLEjgzUH44zbzxpiZALl35dHDaRPs7o6CjQ4i7MuQbwWqD 4cqIaiQqEzTDbZ9NLl+Rj0xZWlqfpcPA1EjOxrccmEFKpmjBWo4rxn83oUwZDErgyYTkplG8klgY sBF6UzVQ4woJUedMDq0wetkB9cS0DTi96hNUkLm3w3SrpCgE2V0ZfS3Z31qyEo9rISbpAOCKG2+q nAjsJ/GlTCzYjGXsRRvujFFA3BeqGYoiDMHjn3HDxxfCk0LNISzBNzXCZwBxyLLQd8YOAacai1SM wJ0bGYH736pX7EdF9BLRSi/tj//zwxb8ghX6iKx4LCdD4crFW/PyIfifP+8f4bfhEsNH7o33zOGV MH+IhEL4oh1kA9suSK8RyfS6788FXQFL29CN2MffSUm1/OR6Bc1nTvVjyMUzL+ovehIVecNc8gqh D0mhyzJtZO+ihG2xx3P1Z737vnIRLz+bITihKMUPHphQzytTqbHApY6BsAn+jbnt2Hg0DX9601HW o2DUto0hU/do3xG2N8fUlOwwPs3X9Gff1vHDpv3CnpVprGk4mexFkdhTudnSZZrcY8DBedI+6l54 1O6j/haKEwuPyH1E/5p9LDwa85H+PdFIxrmPrPN51KiqTyZxgi4JlpYRRix88/gQeP0oIvVG0ed+ IlFEoUWEJqJiQxGh3hjI9nSA+mgZ2WCzVib3IvFBVi+APtvHbX/ndnxbHIH8tcqnPMv30sa6/3fE SdaI++HrdqCFl37WILmjNohi4jXWHrzn7RYXhoBpAvnPlrCDkEzlkplTq3BAAgo+tgLuxvAadKmf JrR1OFg1TIxIhROMTLY0+SbsP2oPQYEtLcar+jdd1ZDxKIxYmMI5sbLWRH9SspTz8c1GILzxPs5o Mxgnoz22qNWmU/fjAg==
Bioassays

Our bioinformatics knowledge

270+ cancer cell lines

Comprehensive profiling supports biomarker discovery, patient stratification and mechanism-of-action studies.

Custom algorithms and analytics

Proprietary bioinformatics tools for synergy analysis, cell panel profiling, and mechanistic studies.

Phase-appropriate reporting

Data analysis aligned with preclinical and translational development requirements.

Biology integrated with computation

Bioinformatics sits at the core of our biology services, connecting experiment and analysis within the same environment. By interpreting data where it’s generated, we shorten turnaround times and eliminate disconnects between lab and computation. The result is faster insight, data continuity and confident decisions.

What do our partners say?

“We’ve been with them…over 10 years. The cost, the flexibility - the value is just so strong. That’s why we’ve stuck with them.”

Senior Director, CMC

Biotech

“We are developing the most complex molecule that is built at this time in the world…We work with a lot of CROs, also chemistry CROs, and so far Symeres has done the best job with respect to transparency and also to troubleshoot the problems and find a solution. Over the years we have been really impressed with the work ​that Symeres has done.”

Founder

Biotech

“Through our dedicated FTE resource at Symeres we have achieved remarkable results, not only by developing a new “aspirational” synthetic route but also by significantly improving the current one to deliver a sustainable route for commercial production and giving us two options for late development.”

Associate Director

Large pharma, Europe

“The progression was really phenomenal. I am truly impressed. There is a world of difference between you and other CROs.”

Start-up Founder

Biotech

“If the compound can be made, Symeres will undoubtedly find out a good way to make it.”

Dooyoung Jung, CEO

Pinotbio

“I would like to extend my thanks for the excellent work Symeres has done in synthesizing the API for Part 1 of our project. Your communication throughout the process was outstanding, and the sense of urgency with which you operated allowed us to complete this phase promptly and efficiently.”

Leader

Large biotech

“A sign that things are going well - we keep coming to you. We’ve given Symeres five or six different projects already. That’s almost unheard of for us.“

Senior Director, Manufacturing

Top 10 global pharma

“They’ve always met or exceeded my expectations - that’s why I continue to come back, company after company, year after year.”

Allen Horhota, Vice-President Platform & Delivery

Seamless Therapeutics

“The team is making short work of these targets, so we will have to start thinking of some additional targets!”

Director

Biotech

Your discovery and development partner

Our expert teams in Europe and the US, provide biology services integrated with medicinal, computational, synthetic and specialty chemistry, ADME-tox, and development-scale CMC programs, ensuring continuity across drug discovery and early development.

We share data transparently, adapt quickly if the unexpected occurs, and stay accountable from first experiments to IND, to keep your progress clear, connected and continuous.

Resources we think you'll love

CDMO red flags you can’t ignore: Regulatory shortfalls and misalignment

Part 3: Could Regulatory Misalignment Be Delaying Your Submission? A CDMO can have the best scientists, excellent facilities, and strong technical execution, yet still fall short when it comes to regulatory alignment. This disconnect between scientific performance and regulatory readiness is one of the most damaging red flags in drug development as it could delay […]
View article

Whitepaper

5 CDMO red flags you can’t ignore: A guide for biotechs and pharma

Selecting the right CDMO is one of the most important choices a biotech or pharma team will make. The right partner helps you move efficiently toward IND or IMPD, safeguard quality, and anticipate regulatory needs before they become roadblocks. The wrong one can mean delays, rising costs, and lost momentum. At Exemplify BioPharma, a Symeres company, […]
View article

Whitepaper

CDMO red flags you can’t ignore: Underestimating technology transfer complexity

Part 2: Why “Scale-Up” Isn’t Just a Bigger Batch Transitioning a process from discovery scale to GMP manufacturing is almost never straightforward. What runs smoothly at 100 milligrams in the lab can behave very differently at the kilogram scale. Yet too many programs falter because the complexity of this transition is underestimated or treated as […]
View article

Blog

O.N.E Symeres: A practical approach to real-world drug development

No drug development program runs perfectly. Chemistry misbehaves, funding shifts, and timelines tighten. But what defines a reliable partner is how they respond. O.N.E Symeres is the framework we use to keep projects moving through uncertainty: openness, nimbleness, and expertise.
View article

Whitepaper

CDMO red flags you can’t ignore: Undefined or shifting project scope

Part 1: Is an Undefined Scope Putting Your Project at Risk? Selecting the right CDMO is one of the most important decisions in drug development. Yet even experienced biotechs and pharma companies can find themselves trapped in projects where the initial excitement gives way to frustration, and one of the most common culprits is a […]
View article

Whitepaper

Accelerating chemical innovation: Unveiling Symeres’ parallel chemistry

By combining automation, data-driven design, and deep synthetic expertise, Symeres is redefining how chemists generate and optimize compound libraries, bringing speed, scalability, and creativity to modern drug discovery.
View article

Webinar | On-demand

From racemic to pure the art and science of enantiomer separation

From the classical and Dutch resolution methods to preferential crystallization and deracemization, learn the best ways to obtain your desired purity!
View article

Whitepaper

IND & IMPD enabling developability roadmap

Drug discovery and development is a complex and iterative process that involves the identification, design, development, testing, and approval of new pharmaceutical drugs for use in patients. It encompasses a series of scientific, regulatory, and commercial activities aimed at discovering and bringing safe and effective medicines to the market. A key milestone in this process […]
View article

Whitepaper

Innovations in unnatural amino acids: Advancing functional diversity and applications

Unnatural amino acids enable groundbreaking advancements in drug discovery, biomaterials, and peptide design by introducing novel chemical functionalities that enhance stability, specificity, and bioactivity. This whitepaper highlights Symeres’ expertise in synthesizing unnatural amino acids, including side-chain modifications, N-functionalization, and cyclic variants, for applications in pharmaceuticals, diagnostics, and materials science. Utilizing advanced techniques like biocatalysis and […]
View article

Whitepaper

Leveraging copper-catalyzed ullmann-type cross-coupling reactions in PR&D

Our experience in overcoming scaleup challenges and harnessing the benefits of non-noble-metal catalysis makes Symeres the CRO of choice for challenging steps, such as the Ullmann reaction.
View article

Whitepaper

Managing nitrosamines in the pharmaceutical industry: A comprehensive approach

A comprehensive overview of nitrosamine risk assessment, including potential formation, scavenging, and analysis, is described here.
View article

Whitepaper

Optimizing solid-state properties and enhancing API bioavailability through physicochemical prediction

Here at Symeres, we have our new ‘Solid-State Center of Excellence’, and in this whitepaper we describe how we utilize our expertise and novel innovation to further our solid-state capabilities.
View article

Whitepaper

Stable isotope-labeled compounds

Discover how Symeres applies advanced synthetic chemistry and ADME expertise to design, produce, and study stable isotope-labelled compounds that enhance precision in drug development.
View article

Whitepaper

Unlocking the potential of high-throughput screening: Symegold library design and expansion insights

Learn how Symeres combines advanced chemistry platforms and deep discovery expertise to design and expand the SymeGold library, driving more efficient high-throughput screening and smarter hit identification.
View article

Interviews

Insights into drug discovery and development 2025

Here we interview our Director of Medicinal Chemistry, Anita Wegert, for her insights into drug discovery and development for 2025. This interview was conducted an interviewer from the Drug Discovery and Development Europe event and we were able to share our expertise. Curious how our insights can help your next project?
View article

Interviews

Interview with the computer-aided drug design (CADD) department

Our Computer Aided Drug Design department supports our clients' drug discovery projects with some of the best (predictive) software.
View article

Interviews

Meet the Organix Director, Mario Gonzalez

We are pleased to share a conversation with Dr. Mario Gonzalez, a Director at Organix, as he reflects on his journey from Argentina to Massachusetts and provides valuable career insights in celebration of his 30 years with the company.
View article

Interviews

Interview with the new Managing Director of Symeres Groningen

On October 2, Dr Melloney Dröge started in her new role as Managing Director for the Groningen site.
View article

Interviews

An interview with Yadan Chen and Paul O’Shea

We are pleased to introduce the founders of Symeres’ daughter company Exemplify in New Jersey: Yadan Chen, CEO, and Paul O’Shea, Chief Scientific Officer. Who are they? What do they stand for? And how does Exemplify fit with Symeres?
View article

Interviews

An interview with Anu Mahadevan and Paul Blundell

We proudly introduce the founders of Symeres’ daughter company Organix in Boston: Anu Mahadevan, CEO, and Paul Blundell, President at Organix. Who are they? What do they stand for? And how does Organix fit with Symeres?
View article

Blog

Crystalline and liquid crystalline 25-hydroxy-cholest-5-en-3-sulfate sodium and methods for preparing same

Organix, a Symeres company, developed scale up conditions of the synthesis of 25-hydroxy cholesterol 3-monosulfate (sodium salt) from cholesterol. After the protection of the hydroxy group (acetate) and double bond (debromination), the hydroxy group in position 25 was introduced using oxone and trifluoromethylethylketone. Then the 3-hydroxy group and double bond were deprotected, and the resulting […]
View article

Webinar | On-demand

In vivo pharmacokinetic experiments in preclinical drug development

Despite a good part of ADME research in drug discovery and preclinical development can be performed using various in silico or in vitro systems, eventually it becomes necessary to evaluate the pharmacokinetic (PK) profile in animals to elucidate in vivo DMPK properties of the drug candidates.
View article

Webinar | On-demand

Accelerating medicinal chemistry by rapid analoging

Medicinal chemistry is the art of rapidly evolving initial hits to clinical candidates via smart, information driven multiparametric optimization.
View article

Webinar | On-demand

Solid-state chemistry part II: Optimal form selection by controlled crystallization

The webinar by Dr. Edwin Aret of Symeres focuses on advanced strategies for selecting and controlling solid forms of pharmaceutical compounds through crystallization techniques.
View article

Webinar | On-demand

Route scouting for kilogram-scale manufacturing of APIs

The webinar by Dr. Martin Strack provides an in-depth exploration of the strategies and considerations involved in developing scalable synthetic routes for Active Pharmaceutical Ingredients (APIs)
View article

Webinar | On-demand

Solid-state chemistry part I: Introduction

This webinar, presented by solid-state expert Edwin Aret, offers an insightful introduction to the field of solid-state chemistry.
View article

Speak with our bioassay drug discovery experts

See how we can support the discovery and development of your next breakthrough.