Home / Drug discovery / Chemistry / Computational chemistry

Computational chemistry drug discovery expertise

Computational chemistry at Symeres helps you design better compounds, faster. We use modeling, virtual screening, and data-driven analysis to guide medicinal chemistry and reduce trial-and-error at every stage – from target identification to hit optimization.

Our teams combine structure-based and ligand-based design with practical chemistry insight, giving you clear predictions and experimental plans that stand up in the lab. Whether supporting a standalone project or an integrated discovery program, we focus on what matters most: reliable data, informed choices, and fewer wasted cycles.

When priorities shift or data creates surprises, we adjust quickly – keeping your program moving without losing scientific depth or context.

Related services

Medicinal chemistry
KLUv/QBYBD0DijzTpCOQRKT57/Ext4wdkICQAACAqirgALWY6np9DxUAAAAAAQAAQNsJaApqCnCA AAz8hgMEYPxGrM7x2QqF04UDPccEwDnMxrMdg3FGgEY+U8l3nsM3a5Zfqwaex514VsHyDQfwcA6z 4DyOwfedgvkJB6BjVk0vYlZNzzEBg0PMqjGWiwh85Sw5JKBW7fpeUS+oI/7uD3U+S7dJetgaLNgm QxgOx3pe27g8w59ss8q5Xt3eteWzGraqaZhrnsVkfLtjG7a3U7X97a7nerWxbrhW5Te8neYX/xjP qi3O4bnG5Y21eXxjybdrG7Ci4xu2cRq+8+2cpHkrtnjzNMeXS44ldB2AfNeSP6vXeY7X0cew+s7x O+/M88ydpDBwQxxgeYY3Oadhss9zvIYC4nyLaXnOZ3VfwXamJMsftmLLbFbHcBzJ2B7g+X4c/e/m mOMy66JlAGIZZIp5R6Y/rJgTjiOZt2KL/+SfXXQar2A3b8UWOo7vtzRHMcZbrQycC4g9Wxzg9gHI A+IKnsc4nsazCs7v2hbQgvlKZg9bY/S/JE38lt3wn+Z4xuo8r1XRZNH1Ku4IiFn05I7n2TaKZnme X/dladeeVmzx4llu/vRmTsu3fccB6i0OcMd4fNtxLqCd53glfWhuZvn5UDRXNDzDqi3A4u44Xcuu +N4ExLMdq1ebLc+r1tZ9Xavg5l20/MJlGgbddT27cQA5h+cY1Wk5LdeacRHncN4ZkMuzrJJxGZS/ XDIHxZLvt9szu9ZssQueuWjYktMTcBPjGIzZ8hiPb812x9vm/SQ9bC5avvNOzKpXMv0BN4QpNpNZ 8YV0eOHxZfSoTlNsiADkO85xmLPlMzufZbZzkh62GY454NZ7OOCG6VrOVzJjA1GdBucwe7LoFiV+ 8ee4bFE12kqjaQGIVJo4z+MZ1rDotrG1YhbctAaosUSb37zGEW1dY23dRNouW/cbAJvfBra+Ubau DRBtXUtFWx+/6X0ffzmKvp9f30T/xdP/XpKn2M3vT9L7MBRPf5bkefbyj/6Xp1h+XeNsXYNFma3H sx2TO6Cm2OIYjAE3hCmfZ3ArZkkHjbHRANR0BdTweB6Qd/I7ZdEtq2q42jVcRXVaR0V1W+9+6+NG bn77mw/Ns49i+UmTHP33X99Es+zk6fspjr8M/de3cSxHUfwnGYpnWH59I83Se5I8/9hJMyS/vp3d j+NJil0kRbEkv76V/4tk+M2T/LpG0m4V1W2ihmqapp2m6/v3/39tDVlNM83T1LqqmWz4xT9+8pff /OdPv/rXz/72u7+HPvxhGIrhGJJhGZrhGaahGmpryIZt2IZu2EUvfjEURXEUSbEUTfEUU1EVV5EV W9EV++jHP4ajOI4jOZajOZ5jOqrjOrJjO7pjJz35SS0kRXIkSbIkTfIkU1IlV5IlW9Ile+nLX4al WI7lWJJlWZrlWaalWq4lW7alW3bTm98MTdEcTdIsTdM8TS1lzdZ0zX7685/hKZ7jSZ7laZ7nmZ7q uZ7s2Z7u2VOf/jRMxXRMybRMzfRM01Rl0zZ1065qXv1qqIrqqJJqqZrqqaaqqq4qq7aqq/bVr38N V3EdV3ItV3M913RV13Vl13Z118569rMhK7IjS7Ila7Layaasyq4sy7asy/bWt78N27AV27El27I1 27NNW7VdW7ZtW7ftrne/G7qiO7qkW7qme7qpq7qry7qt67qsqqqnWqqjGqpedVM2TVMzJVORPdXz PMtTPP/Zz9ZUzdPUSnM0v9nNtlzLtCzL0T3J0q9jOpojOYquGa6hpobn+tXRu1paiuH3ntXS0zzL 8PwmaY6aP0tTTUmNJEdy9KRPx7MVV+2n4amSf/xqSo7a7+3YmqymlmdY+pVctZM0yXIkQ/K3pB/N L2rerz81xR/+32qjF9vOpqTYQ987qn31+666LbtqapqmaXqmZ2qmZpmSKZmOYhqm4U996tOeuqd7 tmd7sid7rud6qmd6pqd2lid5kud4iqd4huc//dnPfrqma7Ymu5qqmZqnaZqlWZqkOZqiGZrf/KY3 u9lNt2xLtlxLTS3T8izNsizJcizFMix/6cteuqRLtiRLqqRKpuRJmiRJkqRIhuQnPdlJd2THdVTH czTHchzHcRTHcPyj1kdXbEVWXEVVTMVTLEVSHEVRDEUvdtEN25AN11ANz9AMy5AMx1AMw/CHPXR/ +9mv/vSf//zlJ//4xa+F33//+3c961e/etWn/vSnN33pSS/60If+e++7d3vb1672tJ/97GYvO9nH Pnaxh/1337vm0EgaS93+1jcN4dpYcQym6c9hY+R0LLPg+6XVzS8WY2dDxDb86mwselbbsXqNc3nW 2e6YRcutVw5rRHlMw7Mmp2XYcsM0PMcBZAvOouNZ3V4B5HwV2/gdr+SXDd8ueZ7hNb/T/E5fOayh M3edy6x2ozW4SrYcNsRG13KLnmyvVQ4DELtY7TbXtWeua8/2wme3ut1xnsOrOMcHdOJ5Jec3rInh 8lyrYgM6dj3HAeg2dtetmD1siC2+4dlF2DL8HTaEi5ZX8O3ZDhsiX8UDqszGigOQ7zpfxaCDVrfo iT2r75eWXbNZgzIxmouWc1q+NXSNQdmzPO646rm+NV2n4Tkdx2L1yqLbrtM6l6/3y4r6dJzn8Ox+ 0ZujJ8vz/Gf/p/fd/Mztlyz5fs+/2EpRXDBo2SXfmdgFa7oSgFgGjawYxaJbAOIcpu84n1NU6Sdp p5njRpJ/M81zI33pt06S50aefrExYhlUe+jYzqC638TPyF2oAKiWjMrpOKfrFUXLrlhFlR6/4wGw JTbDmPlsrvGYk8euG/Z4eHbzO0WNc8yqL+ck7TS/MeIZXnVi1w1bUOKfpJ32Nwaey/TnjucZp3dR 7OR3GtM1ZmMAEMsBYn9u4+fPcvuhD/8sj5//3o/b+H0/xjk827HYI/7ucdgNx+z6RpjoWnbFHNKh bwz15XSd1jcG7qLlPI87sQuOTVDlJO20jRG7YPyDCidpp5Heb4w7VsVmGNYsz1TU95PUbzkcu2s3 nmUXNU7SToOt4FndAKjnOR5tcE7HLviy0fCAdWPgdz3XK47Hq/rW5HQcm61qtus00RTJ0wzP8xT9 909zG8vwHM2xd29+pnhupy89+U3yPMvyG0O/hWQXvSj+3vvpPzzmyJKu08LT3E7x3MbQb2O5MQTU qouWWfSsVrtOC82Q9BsjDkDGcTgADa9dp/nPIP02/v5B78HSb4w4h1m6lhGuAPiHKPlDaYtns7ot tgF3jsux+LXaVnIev3J6QAelvpxtsYm/ewHi735bbDhdryZbnMu4Kg5tiw2P7zg2oHPYGPGcy56u 0xCHDSHTcoyVHjbGXbtdp/nvf+ffGHQt43cMQpmTtOu0/ol/Q3AOd53Dd47P5nmybYy7zuH4XrtO 2/oXLmJVzUoXHQ3XBQeI15L8R+EV/qPwnTbIM6WWk1isXqHyhi9uan2ntSd7LbWeVoxQXAVKDATY 1yKZodVrEIfuvGik07goLh4QJBTBloqHeGyG02kzS5rwKgdWMAYyiCdmKEnvCilJ13xeSahCPRav 1ZDqIYNdN1K6rKBBvc1mTSzWFkW9TttcPDDsiGB3B9SEZ0nviSYGbPwCOzZ+ger3sA42WjPShO+0 lWRg9VhBM+kQxeVh+JzMOzlhqLfitep12kFRYPUYhRPZFASOToOxJ+MLRElfw9kNPhIzAod+cA4E 48Ib962SBpp8zZAHnm4SffHGfXca6mJ9xlAFMt2Ny2viJ7zRsLxEogbEmhCviXfaCG+U3u2a+Adv hKPz8F8zZSRSvdMUmofhEz4nfg1w0QZjIjjHfXfaqzzEhnB0vy9JeFMqEAjrwg6m9UmoRkgTBuTP kKrbP9gV4ISOKIKxdiIUSbykQaHA8owUQvWQwcHF0bKE32Yk3vdM9AC7gTYv4PzOJMgB8Rpx8ItR RtQzhAPU67Twklk1vIXmYfiCG4aa3a0gTfhBocDqC/9ReMGNKlw6jRDisApu5bCKb+Cl4DwDLwU3 OikLboWhHkcQfAeFN0Eycgo/TGX64hDUn31cHLB7gC9fWYUKoSLU0qlGcbh4zciicmD6MqKe7UDY aIGjFFg94WBFA6UQZOKKiAFHCBz3LeDpD5GYi4vCgHfaqdSYB80INMBJnCNsE6cnMRMnDET72f0i OQ97RPmK/O6AQFjXQxizI4J9QHHh98c5KIzc9FUoQu9CU4pbZvszQKgYc7LJRYLCiTE7rYLvm8A5 LB0T4iQCA9aJ3AxgZSsj8ubpXnVvRSYxnsXp7nZCNqYeHvplulE3LNyMneY6TgrLSySWvAbEmm7S QENmiq+JEhimw2ETCUXdayIs6Kx0h/BGp41m/zUNBg0JD5Ru2hdYnTA6D99DuyYEwx1ArE2owztN MBkwvEy9FWcEuYsRxW6pEDy+CF7xlHSDZChKyfIZkRImjWnEWtpUv5QkB9Tw71iJktGLCSo+uU69 00LzzMTsAcwH8TA2IMIsZtzUzVKnKVoDpl6WXNY4GmBF9WNgAsuYeqchSKOAybQ5oVr0sih5yBWl kFgEOFuBhHrmzQXw2pKhjskFLwrEEPhWn98b5rEgAcUGyUqz1QV6OCLupwstAnzhCDvvQ+gWh10B 9VeV2rw6neaiDaBMzfEcEAIkTCypGGZoBIMiKwK80wQIVKcvSNwA1OkKUg87caXTPoNJqYSGRucF m2U4mHsg0mkM2WTThjIRrjA5TYlLZwXMEHfpq4DYaSeXBSsHpAnD415iTDTlYTGCBUgW0It6nYby cCx2WWD1v4A5ZB1LvF9gdU9wS5JWSRIdEex+UVq6Q0C8707LRFyxwfMl7+cVWwoPwttpH4HB21Pr hYZ1klVrw2LE7oy5ArzTNqrH7aVR4wZ1CAMyUlHd3mm1WGD1y4yUDUbYFeCXRHe7aOTCSi2YOI0E A9KD5N3GtL3T8rXA6u3CFOEWkwRLUDtO4boCfKDBYY8a4E5D/AKr515p0h0cDJIw5sOLObGGwzN1 2sb1HV4JIbaqNOHfWDUgXgXuRb2ZaQk/h7hqeBnEyo0zt8Dqo/IQG7guNbs7TdHmNcPTIMQBiujg DKsmJel2jBVyhdnEj9TfaYeOCPbaRQq5OrdYPpDQUejUD4mCY0Z9KnzM1ZrydJrokwmFjQPjlHi0 3fGtrT6/I+q1YMbjwVhWgBo+azBx+BqjJN2Qj10Ys2eZvni0OOn9WXRACiSUhjCURxMRvCA5tWxU WETGhZpOC0T1gsQPHYPXaqeJowfYbcTKjXN3uHA6Itg5CtGiApm85wqlOLPT5pkbe0MEV48wCM6F oR7XGXgpuEhbWnAJjAPBZb6Vx13cr+By/N83bslNS/gRRsgm8uUpRuRucJV+Cwbtv8NE+zsN5iko XQOZYEDDXVh4Q10ZI6ChoIYdblJhQ5aL187UO2YHCRL1zNSIehBKSrIhhLj4KUqT3iEj5G9eoST1 3KQk3dCD0+20SoiUpKshByN5YuAOvQ8Yc7TdM3IF2A5tultMipSkggPkviWPh+HD6gfqcacl/Dpt xEIpOAUuOXAd9ys4Egul4Lpv5XGSgZeCk3lsAyjWvfw3UFDDBBxKfUsLfaWcmOKAmDCy8pZXwA3t ihj/AkcA6yJC5eF12gX/uLhBrNwY5i+Il3LgBV+mYLMPwqQVmPrMSsQCUkxrys2s0rf+1LWdsQZs p5X90XbvIq3A2xNPj/TyIOyk/bQiAjBXgK1t+Q4VLEfbExzSCsQ/8fRqNmNiPFoj5C9ioVRX2HfB C7AOEDZTwKTU0reG2l+ShBySEQe/TrM7I+odRg+w/0tfcKzoouA6jJnHfa0UgnvJLwV3CmAQnAOG ehzHAC64hyREcC+S8/A+Y+MQ/8UDO5kmOqnFwbV/gKgRv/UMLqlMdOKAeGu+fKdJFDbrvzQtWARP UyofpiwPj0yNqMfqYais3dTCIRAjBUgzNNVwgCA50UinwOpoKgMRYeyIeuyowOqGiwd2UAWCeGVq RL1OU2wxq17F7GhOJmsnBTfG5v0kBbVcQOzxfpI2VrWlXtHtC+p8XF7Ft6bl0oheUEdA7GHFqlj7 gjr0HVfqfJa+oE6OwxbWw76gDmzjcQzGvKAOrpp1crp2X1Anjee5XtHyPcesOsay7W/O8TnHWbY9 5/ht26zvtu1z/KJp+rIcYxcck7/b7uZt23ccQL7ZbYBqY8W03IrZAwDfbdv167tt+7ttm3bJeMxS fbyr6oHavufVCp5V3z3ndCzfAdz1y5bn1se6V667dt3xDPsBq9mmVyv8Y92rWc4/1r16BfhseL7j APXHulcDcrzncq6qB2Janlsx64PFXP+7Vy1ajl2wfd+wqvdWPOd33brtmfXldEs1w7+cbs1xgHiW VR9uw66YjtF1TterD7dhO1av/Pzh9h2z4Bf+4XYe4x9u23foyu84AF3b8rz6bAGwnNNwvYrxGcuu P1tAHefyCwAcj2/bnuGfLWBWwXS8omc4TcMffrPuOublVv0DbIiSJhPqHEobK87het1UcWj7Ot/n EOe0/MVWsAGx1Suvv9jqtuFYLqvieFZXNRvjs6/VqllxPKs+WMxly+xWt+iJqqZsd8y66xi/4wDx Pc/1CkbDs8qWYfjBRcN37ILnGf5U9QAIfrJnPL6T4WwC4tmW51UFSxyW53STczolZbym5a2mt5Ml SwCoX3g823I+zy5xALgzSVt3rJljAbKmf5juTNLts2iYli1bR9Nu3uc1BtxAdstpGb5znK7Xw9ZI 4fhO7fpe2cnnwypZX+VbpMpcLVajqVqsWKK4KHsrXKhEVhyWp7mdJVne8GUAPNu4zPrtwEk1v2/i 9zJec2rPHHN6vornuJPik5FIQK2+oM52YN31KubIlvxOWXEO3y75ctgauHzDoElKx68CgBYOgCiG f/Tk2Psnv7A0ASDJUgzJ8fdehh/5GjBAgIC8FVtU8eqe1Z14Jc8egBYe0zXNimGrevayKo87d4iJ ReUVYqfU+pvuXqBs/FyIIyI4zDophSRN2MNAw5OmxpF1TRFNRqVZvHeTgOjeICXpKOvT6t3oAXaP tGB/7HBzlkak01YC2GqqO+4lYAm0nwGGWwtHIitf3KyTwu4zbuCG8mNLtAGmrqs9QKBcsC9iqy7s NAOYJjyBjV+g/wUIDPW4/q08rrShFxw6ywjutDAXnEJNILjV/QoO8608xEHA4ygslIJzxdnjIgcB j+s0jAFccJ/DKrgc/jYRTKpNfUmChPr1RvTCWaEsU1t0OvwJyOaAIIOHSTkpUdMl7gcSqrFDStIX cQbsbcbR9jc0H16noauK0lXkaYBz3SLpr5Ho7bH3RD9O0tF06twwCQIntCNpoGxr8GxXgiuUdMeV cgT9RAzTjHZaSTN7u5fJKT1HOwuOEqYLrtMsAy8Fh+Mh/Ht5BalN/Y+pKYR2SYVFbpGLA96kk8o3 bAHU37wgORXUJk1EwFUGZ6Mu4Tc40LZdsAAfngdh1wQDzgqZ+K1pqfYAJ+WM2T0p1PhNmlL83hwu qd5pBU4i1V+0AdQ5M8XbJSaT2yPt6fbQxrSdsXA4vBFC3Iizx52zjKCEE8QvmKufdgjIHBlI3C7P 1QMy0mmUkMmnAkcEAxoyqULY4dCTH2fAjipBbedQbitDVRiFAe80A/qa3QuIfN8vTObtmHrwdjfk cTsK6W6PiKuGN2fUz11eU4LTMCD3zdIdq1tiBBl6uHinB1pZBBCNF6F3YB3XAo4Q3rfh0OnuPCLg 2a2Gp4l1WmZgHA0gvBWFOiBeFGh2Ad/PLG9enVbF9h2QTFLCnGcnrrwwKVjEZWHBSpTM0iEX9is2 WDo0rGMHoQ6BQZ5GApDjphwin3ACAQIJkjjNWGKAZzU46bQX7pFjOl5CYYHRLcDN7UpwKX6ZIUiH TpMuqWBA5IUcw/x+/mnSEG+tjIj6UHl+FvhcQFGqSf1OOwgGPistgL1af539QD1c9fDql6wkK3Wa rBQSDVQC2K+gDbKl1ocyQyshM7R6YYYSODBadKfT6M6L0h264xGtqyKm6XAG4vGBUGYUD5nkLLcx L791Y5QRlSA434Sht/lNWGHRngZdVEklIlDrIRQFVv/srwua7tf4vaYJzz7ShGdXw8UD70JpwDWM DYlz0LHZKcYSWBESU2LenXdo3hXeSBcwh+y094O6wmlsoPCG4/PlpLVzCsfXLDHWy0PMaBqmr/Ca IrxB5mMXvmbFnEt3onY9eCMjak+yAXnGErOjYuKR6PpUE8OABKUUbx+5V4CjRvBFznQD8nMkJre7 3JIJwSkJA/Jj+ukuTq4ANyE+5KDEDciN6zsKE1cwgnEIqsNrxMydVwHVdV196ur2HIz4UBpqGx/1 xB5fTj8u1iWdcKBWdw0x9ssoKerjA9kF/JzKn7abUCH0aGY37DSRW2q9SuqIyKfCTSiROkKJ1P+t rY6rXlz1hqr/ra2+4ipc1Wk36kbBHoa/Dl6r6Ea9aEi0CGDDV8gMra+QGVoKmaHVQSIQaGKPatD3 YLgHw2MPhse9Bn1E2kf0CUFvIh6Ie48H4h4PxP0QD8Q9polpOqJC/khJ+trhjJSkrzIxJekrCo4r XPeBhLmGAaGMlBhFdhJCSswzCGHFh5SYgEEIKSDsJISLESVSv8QVSlwfR0Xql0AoKYnEizQyKOAg uQzN3/O/LAokR733ZeEvy3Nd2BUJYNd7BbC3FSPFqD21tmK0GLWn9laM0E+mJFpavX+NRprwBk1B w5LuSJrwBQ3qddo/dVqndRrlW3lcxCCSsH8EInHSguIthAMUk09lHBcHHHgKK4/TFMSfyYY31EgS 7TfFpeXj4gYEv3UkGh1GohBXvd/aGtneQLSKvgOjpTgwLgIY/BSjwLd6p8lKLyoryUohkcC3PIFv 2SN7ZI9eFFQQjNb1kxlaIA9Rg2rQi3baR8Rp0oRfuxV30wQMjz9e7JCSdMPF4zYMSEXsPpAQ8fhA wrBiV/wHEnZaWLG5DQMiOwkhJXYSwnBG8RRDxYeUGEVQ8RD7JIQ4xUNy9gDptPqSsweIl5t+p01y 0x/IcNPX/mRgIfk4mncaSiJxSVyS1Omnvj/91Euk/hlLpH7BzDZhaPhVtm8Vo/ZUaBejFlRqvWLU tqc8/iyb8DgBvNFppJeqH61Ipol0WmXBofRDY/VTG6Z6pQMZgf2rWF9AL0/IKU3KFn97hJyC98Tr NFz15p1GOonUv3qQiDwwWv1GvTfqDW/U6w+MVic9DH+9UTfqRf9C4FsLgW/JSi8aQoRCHAHsQ1np RUEgEAgkWkOZodW/zNCSGVr26DJAeRgeh4gxTXgD+AsszwGB+BApSVcgUpLuIVKSjkhJ+opY4bjH NDHN2xElUHDcDSg47hW70n0gGheC4XGnITYMSMVQfiDhhgGphBUbDGcUDwkpsYMYUmKUA4MQUmKJ TsvZnJ0MTAYQXHtYcxdu+jd7gEhcKJH6QfFA3CWuj6OQ3Gs+kk6TuMLvOwgEOmGo91/WK4gfhp9Q OXBuvqzXRQlg/1W2YlR/KbbmDJrPkjL1RSFLHFQPGaxp71Fg9Xnmol6nkZaDwDEirQxU8jstHmRM nDXDmKAK5sA5XAHUm68p8maZviaMNyB2Qja+///W4zRhjK+5KV1MXfEKmH4mhRcWYVLMXJCo8qz/ NScKgdLNPTIC/I8a8+Mc912akbKBxBQYbN5+Ll4BPBLve4Wi+MKA9Hhqt4e2KzCNxNOPcQgDEmS5 gtFIJM32ZzAgv8HiCkoI0bMwRbgBGWI+c8P7UrO70zSIgWGQknSWWxK5mteDsJ02K3AL09PxIGyH Eg/YEAVUVw9jPQ/U43S3FjUHIx2QK8CWLVKrbMTWSvdcYrGUJLvtCOs6tTrOObyefdQXUESKmFSQ F0CRzsgyIp2WuOCm3wjBb23hqhftcpH6104mUv+K1ypMpP51hKtGCNGNimler6PHA+PAaPV/YLT6 6WH4ItF7oolOuwhgHwqFQiFCLIBFgW8JfKt3mhf4VpeVQgq21PoOfqzHllq/aqLM0LJH9sgevShI 1GlrAi21vjdW8JPHPfL5fASdNOE/DI9heNxBGF6DPp2W8Ig8uvPSnZfuvCjdeQuFSErS146C4w6i 4Lh32gIFxz2meTuiA6LkNgytYtujF/UqYfeBhIXKG3KVw4YBadGwYndaZbBhVHrugYQcSsy7US/q UWQnIZxRWFEIhsedEqMcKh7SFT4GISRUPISizSg+f4ydNhL4Vp8MIEZvp71wU6ddNgxIoT1AJgMT vFYF7QGivYsR6k1y9gDxNjgjZWsiSqR+RKjC0VyCozHNK3FB8oo6M32JS1JfJK73RDtthuYtJ8Fr 1VuMROr/twlDvU77LWxg9duE3aZhhnojg9fD8AXn5WH4A071MPyZCUO9zX9ZneYaNKj3Du7Pw/Bt E+YdVAXlFFC/7MsYD69+gSoHlviLAPYqB94Qwm6kCEKVolWgXqe5cKfJLAK4/iqU9K2t3mntyVNs MgIHRqu3p/dEZaUX9drCp4n7x4a2YlRAfFBw3NtTYVAKLZUGIWxPiEobB3fWKVjPdwvKqoyo9/mP wsPqR8V7oB/WwUYrGBAkpLQNQugxFPKXi2RQoVlb3cRFDN+AiAfibpAcxIUMtjuJQygOoEIWKA3/ 6ZKGnQamRtQzI3ncSzwvdHIh3LyoN5pGVBRBHBEP3rXYWRITIFtvpP7QlYP98yil1n+JNE34j5Q7 LL+wEb0nahgQW4fbaR8D7WIUHDDILgRUo4Dogqk+DFssBv4VwP77wBaDlKSPLhU4ccxMXxIKqInO w/AXIAGMYEutV3wcFdhjH6ywqFQbBAlDj2iF+KcESf2n5eNiiE49qV0pX2uqUfikK+PxIftnBPZO AzkjsJsDc1YzLvlaW4hT/GVG3mSE+AiIT3sgoUjjVbjpd1rnaMCOix6G/1k0YJ8tJhpv1SQGKUn/ nxf0mIUkQpD4TvswLNH1KjCqw+fFjKiXkKmvd602GJenxcqzeHB+Iiqol0HhuwR0x5skUr89EcA+ UY5gP3jDN+aoEfW+Qw72e6SYNaiXQtGX0+FbR7B32qh4jGDHIwVW7x/83198xf8p9PbWy0OUhGBK 8jvNgyC46DQF6IEpTSOkCQlwrbwCfEB+RUrSO+2lSEk6qMhA4Nn9it9CoUgoFClJ94hvgfAQKc7R lTgE1YE0Uu8WrDk/+7BMGbJ0V8tWCCFxlynJiSWwIjrNM1ThTfJEGdKs1MFZh/fC2Fozop8BwWeS jBWEKiqQcJHjZj41u19RAHvTf8CJUCQhiDNgN21c35Gj8NKIeiEKN30gkfo77Tu9XsEKYO9JjUK4 aJRaP78HOdWIROAoiLtbvxBUIGghhNVrZQUC/4J0Fbj1WIgIhOlCJLooOEVnHcBas5IMsa/A6oox TfhERAP2GfeBhDgLN/04haVWCahEPRAzoh7IsF+/wIyot/hOr1cxiccLdgil1w4K21db4Ssj6kEq qrHLOA/DV0TQTrO7VeETlRTdFV6G5qh3qBRWCSgZUU/gO73+k52EsNMikhH1Okik/pJC4jFGhDiC /RvxgkYg4yeYqNYgDCqO9Hy9VSVkDkY094xQKRc11B7qjInRaSLOaxLFrgA7WzsSlYA4Op1Nh8Ij 2MYYKZycMs1HKiwic+sL6HUGUKTAaJVpwRJPPshAUATwIS21HjSYacKDg5Skg6dDPxN3IayQECi3 01IOByH8BilJJxmquI+xHOygS+u6CNNj1xEo5W5E0XX53jSi3iHUTSPq9QyiEH6mEeUQQL0ROSFO Rdt15k8KjAMwsBNgbCggn37KdwFQYES90F2hBMhYo/1iGBpRrw6NPjSiHsKkQr0eGlEwNKIeuG7Y H1qVEPZPRE94GoE9FQp5z4h6XcMSaGXCrJO6TAHTGxM0+ag+LBvEVzuHK0F8tVstrZUmTbi+WeU0 IhDEX3hG1FuIC8Qn3ChJHzgGqBd+Nn4zop45gax8p4GbEfX8Y7Hy9UXBKAkrr9iMqPd5LpWfJDYj 6oUciMR7zgv22QBu+l5JpP6E4pu8J8X6nhKP9+QzqatBCMEJCvZOg3wE1L9YHysB9h4ookTPHJZ0 UyjUJyPYO+2UwVZtzvi0RMtCMqLe4sBodU8yop4nM7S6ZES9RDxwQMFxB79D73nsJIQf6nIpvN0Z 0VozoqiGXz1Y/TBlsER0UXCsMF1wEJMlcJhvJdh4HMUALjjQZAkcC0M9DmQAF5yIcSC4QmFltHrC AfFCzyj5aU5JUf/loBjQHXCpPH1JqXzLTVa+u8w/Nb0OiFRlZRDCX148w8UWO81+pIlOW0OXlDoq IR73QWFsXhezWZGeVoAlY6MkbUNGJUKiXQE25+pOa7GyyncTRxoSBuQcEVjE+KunBaXnkfoCIjqR SyrDdL4/MqjccKRoD5AOdyU6LUYpeE8rwonVUDtRxKJUJFhDraXhQdjwYhFozERB3AXol1OP9YD1 NjPAgIg8xYisZETiI/asC9XTqvIdLr6krL3JVypEp3Vap11OyoJrzDKCixRwyeei+GmuSdmv2bSt Tr8GTQT/oBiw015ysvJ1iPE+/+afhkg06/+VZew08HdaaUnN7k7DCaMkdR2fVoQDYlJq+D/z22mk HJ6xiN71kkMfns94rfcdU1vpMzCCATsmiBFR8bXV8Y3IDdfT6fAfFljc08jYaV9AI6/eTnNNikan hd7N22mcCNJrgUenXfB/35zmW3lcRnRRcB+JcOA4C3PByVrkodQhMOlswPV67wR9IpQYgf3458WA k1ZWeZhMc0lVSB8jha9b+Y+hMn4PWHMiRovCBzoFDykUy2OD7zksUhuTQmKBIHHyejDEEA53vVLr O20AnlM3McNQbgqOacLLQC3jNPDxpKUEB0J6M1bQoB7D8nFxFhJzTxabytfaaXls8OVMcLqdJhIh Hve2aUVKGT0I62I2qzTSbUWKGamh9vdPXTNqRk4vM6iGhe71+lrVGiOYEuVT/FFfwMOA6z1nagph yGJ+n3TBTb8xYh1sVFNC7rvT0IFPbMP+w+Ifcg3xO63TbAnid9oAQeJDFkrBtSeQgjNbKQSXWZgL riHYeKaBl4IzdNoGvDAigsFYCEEaSfxxkxd/zf9AkdTApWFBTHHAGWzwU9Nj0EnXxGLttN7SwGun xaBO67ROcy1W/iyhojzuNAo7g3Xa4U1ADB90i5+qQF2zhmRAMa0sDuF00XFwup2PSamdZA1YBlsX GG7vtO9jeeEZ68gXDgcC9yi/NoS8Z0+fCzhQYRgR2f6wboeU78s0KizSaYSCa4zMIA6UwSSv8JwH hbQy3hB1D2QJLv9dflGWAPqgkk7jwCiNiDflKDfk+D72h7gY6stC1pPCHu/LllhCpYF2Wj1CO01+ 2TgY6aRRkpZEoPlFaYtA48Q43a1iZbZnRPJbtcNSTOvNjZK0AsnBiKWjhtqOn43vn5ntiRlgUqrq ICVpp0VIUpKeF42JUbog921SzdyQMMEUwpz0YkARKvSJ0J2UwuMY1wstGBUWCYUeJmVB0Mwng8E+ dto5vyg3mwt6Ych/p+GzLuw08I84BlAkBcroCKxNwW2k0+CTwh86jaOK+0e5YO80gu1KcHcI5Elf ArLX4gPU4EjDTutwV+KVIVMt58lR7uRRAUU6LQYZSpjnP5MrzFAMvjkcYGqnyXHLiHAsjE6LRBAK riO6KLh7sfK4Cgz1OIsBXHAWW6bgHANDAuN+Bad+K4+LfCuPJFkHnRoGRN6Hj4ycQk4Q1K8tJw6o QHhWvtMkaCmL3IfVTz1wt4n8lAw0op6dQK2+77QC2oB4AgaEtXYaesItdSy9RyMKolywtwnUB+00 7xc8CMtr5DQzfbVMEz6WSsTPkP/7zjki2GVW9TPr4nJswqZgKot4WSNpS6fVk6LYNWSUZC0jQiCw AhQxSEl6Q/RcwAeJUemHs9RpqFUKblXsGjIGdqHFbj5Fg+XuNBzdkjoiExlAkbvgymsk90DCBmPj EEuYCOx1pNQuHAPUOwy+AgLiHRSiieTgzjoF6zUsHxchmRX7BwIPDr5psQSR9aQWhyuTDiQKlKui H631TnE+FvUqNSKdlkCtfplNqGSV1amoKaFCJCMiAkGQBADzEgAgGBwUDwpG0+k6twcUAANDNiZO REY0LiIsFIZDYWgcEAlDOQzDQIrCMJCDyinJjBgAZAQgloMB+NCWdwmCQ0tiQBSh+cMCrl61jFrq lFiYrb31CQ4h2m60+4Hi+QKYAF3J+k3yzBAQf1GdBgpPgbnsvnaZqBS/isY/lX38Ku5DPAqKJT2b 5uo5eg43wLaS3YP+OhoGF4Q5k4HS8gAhif7k5Ye9SI8m5wEV2hzygQyTtkPSyz2m4Vm7rgdNouUa W72PrpZG5vsIhY5PI0J8ZnBRs9e/n6NT9PAWy85rfdsyIYL5vhUbAqDfDV9brwvVSK5J0aptnSEg k88qSrEKNff6Sz+Jg5gFnemJNdB6bx6m70UYSGvEkTUrg/F64BAu9BWRZhtYGlyY0LfhzLpR3u7y FokglPd+NsC6QgP5pSMDmdvha66XhJDYYuEfBTRgSm4zsJeeqR5+agAWAlcZLxy/V0DxZNHKl0tV wEhLAD5KjJzaRiDxoiyprmXrB2g3ZEwYkTGaIOeJ3Hf/5W/UfCyzJmGgxBkuUvS6DRLuT7rLhVsA 2nW+DaPVF8UdPK0crwttkBcvOFWka5EkKx+p4LVkFnbcELe+lWt/GPWC0IXYUFG5eZjH+KgSWZGF LMZ9ZYViPVGlXU4sBI7ShNqVEKCPUvS6BJrwXonvZ54RjSsjXOkB/SaefvdVVYWBIgFl+CoOk76x hgZ3rVPQ67S7M3Zi7mJeu1KeFd+cTWdLw+9/hXzUnCA+FsP5TVLWiqPForIYTGzBZaNxIL+rRL4q pxbfQyqG8jVjq1SQ12JjeyyFLWNYED1YzpoG3fQWCvpde3hvBEvqEnapZtRMdKEZWNqfh2b9lZN2 YcZI3doKReGeODDTwEpnMSUWNGj0l+XyBwkfZxFUxRSlfVP7xPW8JnTKoJsYeRRYnzMc10CkDnoG fSdFpOeQcid48onCyAK9oBGZ6FlcTv93sH6UdAEvKhoDXZfvwXjGRohaqnTarNEXwkZT718EO50o gzqIMofgVaCK8cuk8iKQX5GvVTKYgzJQiRqBcn5Lu5+gm3d9YdcmJWo4cnreSRoWHjh4TYt/Lx2z KrVcU2ZHqvqpWXermikOQydRmIzbZ4XnVnmC4JDCyjz4C2khXQY71W8W7F0J+2OLgtMOJGpEE7hd Lf6Xh8QqkFpLs4nTXKvEwdrG4Vuqv+qNJ28U3jEcw51Rya9yH8IUW/9yhYu7SXo+DuwmHWosvNbw 8OGoU91ws/13VW0i0Bz4oGEAZmyyLyDqEuWeoZXkJZyc4kPB8ho/ppHT+rRAZxrBT+tgL1qjncZG 6tioLxxe8u3C4ANjqbPEI3q3P31YsN3Q8wMwZLShkV7Exq81QkmP2mRWUFO12qh+tftuk5j3T/f4 UboCKmOjy3HFeqYLenGtd231AKpBm57g4ipFL0yHECzJcfaF1q6TqHYYJPAXzrBcRdAhuf4bnKNy 8fweoExsFcXEmkBo4DCzQbz+l8nSimmZFS6GRzfD+Q2MeGdoUC/h5zrBtjj54Fuo88xh6cKEHleM eiPBH8RG4jsN1cTQr1KZb8T+hvcN3wvXKqENuoVKFNjwaLqrFuXapXhunWTinmGdNCMenFWJCVpC 5er/4SwEwbV6IAEHJKGfrkZvNaF6E54OuBxHgkW5fSBduyaV+3ctXfkH4bEb1KTHTq0uW61L2ODA uVWslah1/ARkDx07OcWDkw+u4y4fdM3ZWGsuh73TJzTxiYKEc9jpwOTA1ROAzEKtYfVcuV+G3LFw U085YMZoQ+mQG58UN9/5DqfqgxsWD0QY9JQV8ACYeXLiOpHSzOxEwboRVdxVbiMQGeybFcQAC/sc HULWHBd0XylvDKaRfKwSAqYDM6m47sH/uSNttA+Bxb6kLqc9Gf8l4TtVJkHd63lCUwNqFx2At5+o aXe+pOG3IX9rEuE6y31Xyzh4yfz+3VqGRia1EZvGwcIIDVxTVJrFrLMmMoxLoE+YJncLJRHw4oQN o7spNcG+fxSZkneyr+8xqaXSTkh6Y7lzCAf3x0MwLoOHFN6aLc5k72puSL8fQv8O0nDLXhdXVMrH dMVSRhbkb1LByYr36XFL/2am1idjTzochWZO7q4ABShoXBSiqgUbYmvwtt3PKgsengc6jhP92ydt Tps0f7hhPqo5EBsubPH/h0f/KAVrXtAdMHw99D9s2XHaRLhbqOgNd9UyRBhkySLxuEYysTPItfCm g0GHTRAxg9OafjJW9UR3x8sXU4aekWcVwPvDZr+iAW9LbX9PNAaQsvksf6m4yIpDyjOprcIpMkst lR0aI2uXzur9ECuxjfGsVDafMAKRuUYzlKLINHRxMjceqqMFYoFDnUBaSHqJ9x8QHdiL7W8EiUnV C9or239m27q/KUWW5OmP2kzdm+XHOCHosq+ZbAvNvdrC8Ma/fC4LRETRd7dO8IY8yZhLDyrdLLK4 uzJ/jGkWgWBmzR7D+lq4i4Xo4cEqsW36rfwIuDA+tMQjRAg/dibOuRlhg/cWMLKSapWlwh/dC4Jk 8J6P3R0VnY7N9hyJOHJ31hyJsyQyIQmrhDcv1y6ixLHb3ejYnayHd4bigvaSrW92IcDgPV9xNXdc N3YH6G4m8Kb8SHQ7gk9xYSH5Krw/3d1rKNFxDu34I8RytT39xyDCvbTiH9R01WXR7Llpe5am6Tur vD1MxIjcJOKl2fw9QBlfeyXTXIlyB/xjaImZs2rzqfxk63mskZx5Uk6XomLfmgM3uLYrGajjky4d UhFaLW3bFqAQbhOtXxGI0nF7QWuhr7i9X23P4qDBYpTj4dSM5LCUPRP9Jcbw2HH+l3KicyuE7lLh 7RNq294Fbie/oUJO45PJrTm2pHTtRSLi6ocs9HPFNILs0XBtJvuB5qaF/sAeAvF8YDOEDz0qQtrY XelEIiH8rgZ98ICd3JFoBS2KD+cuvR0RKkNW/Rm3EVakScTcqQ1IFN4Sx8L9kKuSSBqJPR5LJ/aw PZzg2XQE0jbG+xxbNSpCwLNhQ1MiirZum3Jst2F7m7TdPZY/Bdu/Z1Rc5jkpilIbkCMm8+sxiJwn FkB6tEjPDZuU9ma4+2On2RMZIW71OL8YbEHHrBH2n1AlawsXozOYhxwefb03ZG2KTOXovh2ZgtVS FxaZ+nfEauJPsumdBw71MLJGy7XVER/nmHXHZ61DvQlZiMOpXQjvSXYtJlp7BiEY3PhWLG/BPj8n q5KLdYEbfPIQyOJIi5F/pRc8xFXksxl4PXspkgyT8QtMObxAvipBLYR+1CYWF+PfCZvMnyyEqX+i 3tPDzl7006jWo6pvDfFeT5dyY7YuTt7PrwBtEKGQSIaczGkDDzoIwDPtY/dRXsseM//72M05wlEz 39+MtkiBOGQoZEkZ7F9lYIEJZIk8eT5U/5P//uu03XdCAOLYxvEWFxqg4bLaG2nAetR9zgHBa9+x 7hZ+Ow7WjbdJdpVEm2wmyhMbGlwH+0YwehJnK6PuT8aeMry867fPZ0i9y7eZzfIWsmf2F1LHbt0H sws0aOoaYa5N6WldF0iAEtHvWmRBZEHPDSrWG9y89s5+O5kH6hFX53Ww4blT2E8wIs/EadQz85LL HlZb+Jw7FOU1aBcWixptUZC2hzgEVvNR1ea69m49s8kUT8eyVe3BtSFJaW2qTZCrlPmh5MJYZJMo NoRdGlQiIaw7k0HfkSkHw9iiZa7hhE24gGAfDGR461aFd1/Sfiel35VCinNNiUC6CKlb6WAxCJEZ m8RADmqz7BgGcjqo/GrlHCBcACA7KT32nxOsSMaxHOYzFZk/e3D3qLmHkflzjkYYxJkRlUJBKgP8 4LfUvQgccYhrp9z2Kwv03ImLXrsjmpAy+9HnE+PFwMqVbF8Rd8VtCUNJW4X7TzitmA0D3CfJGCSc drpkNPtdrMR2q3ekDavRrcgi6bY0tN9uDfYfG5vb6vNotIQ41NJhiw8SakOuIdd19HquLCjl+rQ9 K45njaUWoD0R7CrPUg3og8sHFe/X7mfP5lzanbyU12pJ1NdGfZfTzlk6Pt8tDjkeO11Z568i7PVu l7XgTFA4xQ4HrQAnKJoaghWo3cQ/+8bcPIljT3dw0BxiOAne6gP/CSJi2FjUz0UUkx4yxep4Xc1j 0ZOxGtXZ5rAXZWxZPEpnlCSEVEPsgrFXnVh3QRYE9mIGI50+Ak6GpV+okR6y++oQXFJ3SMhplA5n 1RnKdiG/XWRe7vnwWsExlMoJhWTIQSzyJqMXMuQ+MWSpQjYEFf9qfQbTsvoqoQ5eeZPxO7AqUTvB 0hJNRvJAiKqcwHP5jezX0FTbtchtW3AiHdehkiIGU/yifU3OBvKEX+r1P0lyJQNI+CDCnWy513k7 QZW34vfOE/WF3fbRzV9oIEl2QyDAuiLa7gK4ULRvwewlTJQbnxc5c+KikImgBlUrtV+G9sLaaFhG YLACc1Vh474tG+ZKnN0KTSLXuZWV4rqqIwI4HQ8taC2OdG9oi9E1DXUR+hIREXcQTAAlt1E1ncWu M063R6ACfpwBFRZBZHbZDIMT9Dw9W1gp9s7wR0dzXw6Uj2QAuGM7NtiiZZq1Gb2OMaUuIs89DfRa zrDbO7yX6Lk7Mf72XQH+iv0TyYX9WhdiF42hzsGq9z64H/6nqRkU5DuG4QC1Qk2OwPBCG4hU9/TS qrsBuhbaAyQiyg2cRz0F5P/pR+u9sb9Nf4awgVrUm7JF2YLS3CdRlHrBwFbGmQnC8hLIyG8y/IfI //2qftKedsWXGz0Tclm56gIBiHBxeTxuzSCPJcxf0egijNART8cPAsZznrLaTLneOtxcozjlwk7p 1ZyrT25u6NQuGwIks3ML811h4/T8gnjGwRsqu3yVBxum1BB5AH1Dx98s1dpeNhWB+/4JnJZOodOw gyGWQhH7lW0dA1V0QGWWzWxSzdCO7M6Y1BJHiMjmi3Z1+ELo1Cp2CCK9mQSoJbqST+ZRc6/4w6We um5HNYymoAve/Ua0hZOH566ZveouAxjW2dVxTanTKtjqa4LJNSLsJEjK8iWSBUDLXx3M8UPhIe9Y 4Uq9cSF1vUIc6d1WN7dkr+yij5ub9UAiydI3nTiLsEbydB5tM+yFpHeS3ggf/rxWl9RdZyJAuuzh pJXH0fipB/2rhp6V/WjsF0bF43tvS9KbeSXh7dwuT5zK3yKgTZr+tFlDbTCTf3PvRy+Lj2GPA4sA 1ji35BdEN0G+XPvzQuJM2M5IUqsi9Xg1dynu+PvNE+EI5hR3G8Dk/0l8Dwww/1vhJ27TuOPoFHeq Z5C5xq8Ud0xRAYmKjMPJO3l1V8ID1W4KN3oB4/yLsCHNKHUCwq9XKwSAzYh21gKVmHroYFGoI6Yt x6Hr+yywKISKQ5cFo76/0gmwzjshda6+DQuwzsPtvFAfMkpBJzaxzrvcx7N7JWp+6zywxEUmQiyJ 1nkb0nmyaeqO20+d71Tq/rsQ3ha9pqdAGLezztV+yX3ONq1pgvdnxJBIkSsOIXY7QC4583iVbLEw iHNmTALm6Ok3TeHw9wmPzBUAPtBkBCF/runQagR9BODuRC/VD54C3kzfmE71isIRYsWdELpVobN8 eZKC0MM9ZIcqi9GrIrJgbxFo5kmA0K+BImv+HgmhZ9nSp7sV9XXCyi3927fbX71K4CXmhfl8niEH MN9KPVa8Bc4UqtMn3/kW5tGXK5ex68A8u8M2bGTSOzBfhzcH36IB5TyWuMXWXCBka+OYINRoP7K1 7XacolR5Q8PZFNna24tPIu8MeFBUmD+xHzcDIgBVpO7ON2p4F5VvmkWwJOJWgDDyZk7F1SwJ1w4R dx2B4I/1k/MTyYe7JhNxa5nlubmQ3W9qyRE3Sbi42kyHOMIWR4WI2wnaA+BFuhfhb43NuiLWiLt9 WE/ABzkfQWV/XOrqF7KycHbEfUziz/2Y+eG6qEvtMzF34+NDaS3lP4/MxMRHjojqFdExMfTf4Ui6 xkwMu76LMvtAmEF8Z2IWKsw1p46JbT+zYmsIPz6jaFvdP5NoMTG1P8tLYdRzqdLzV3hC7d4ppiLp 2jE3IPkji5/3diTCHFhMxRhQ4RMOdooccXH3td7PJ3BqQHckgoJSwlwotn0kEo6UMLa4By95CdG/ PwKhhDm5A8Aezo1b1pYww/l+R6CE2Yosg+B+VTSu4Vdn7rs+kNix8byBEuZgHP6nT4Zhf0xFMeRy vEfH+r2n2RRgLwZoUW6kgscEM4izHulIVKzxYJfvcEgIi6aNmk4wxhr8ZrY0E4zssbHm4gXJap0J ZvE5Pr6ks94JFvZLeJ5XlgkWFIXN/kj8bDKXYYJFv4vQ6rzQGQU4wZw1+T0ZjtQPiitXkvDOvhbM 09bQMiR72eMEi/KYpA8BfL5fnikI0AmmeNykcph1fLQ9CcPwzoXAK2zus6EuWxXBpxrfBgzh3wq4 QfqSowvleB8CN4k8iXcof31ExUV4Mkdj/cZOXGZOc3zFu6gf9DU3Ad7IhIzrfI2hnOZKQ6HzwC+7 nxEjmdP1u9Zp6zAoV6tfeoze2YSfDXVVxo5eA8eUSjUxIR7iTZz3URT4Ppa9j97luESbIEh060tr TaILdi2BiuU++ciI3iBmn+ASUu/zeaN3tj9k78Hn5qCx8SGq6C3ZyXGKBts6GGdV9N7KqMSPjiPU lfBTg5cEF6/FPkvtPIh3njmiGufS/i+2SxoqYTq9QQy+3LPGx8MAKX1RT2XFITJxOc8czOT7EveH 0q1UHs9azvOvty6L9zz4wyJfC59jKOnJnjXGRjuqwfqkVcqNKZBKQdU3G8bBSwYy+dBYkTPktImf okJI3A+dtvi9H9vr+fa9WnpMogU26bsUl95f3wx7eSZkCUR7mH7kKjpthqD/zHIx8aTpgDkdw0DE Jx2Xt17KKcJKVgP0XrpWk4W3d5yOFij62VWyYCRncRk49e8HXeZK5rYbWdDQRo7abIOeQN33Q2Bj 7SJ96ijGyKJCv/e7KpCSyG/88mHgIP+zkFpKdCsIUX0ZmJztgJxsMvdsAcPbIztk56JKRLImOo9p rpUwpCdba8d3z0D1NZqqvIIyC+A+24b58Ddr+pRxibvGc4lFDQEmlc0v7hC+LNcuWcHQMgIRaL6u oq03CrW9al6MU7k2lEkfTC/b4oT7OrkVj1CdU9P7VbGuaJHDGYdSOmpxmROX66YldzrPWBQu6HJH YfTGQIhmOn5/hHOdFJ/9WOnLVR8LOO5yJZ807o7orLhZxtFgqvW+PwoQs0eqr63bPoWHnHotp1Oy zFbh5eRXPEYtN0mxnjPk1TNUawxdDCGxM2KXbqzwntaVqc0iB8m9gkHjoHAha1fXOQvsCiF36DuI tFV07XUKdKmA0A7dY14ZCAUP4nBkSqnHIcMK3Meg8IAOMO/f/FaZOf0oSgKnkSbioaGuBWvDzbC0 O8MuGVvgexjqFSvWIQDH1S3WtuMPQg5uGRobc3ufJprXxEWruWJcCkk/oOEdEa5u7IyX/G5wiNtD TNufau0ZPQ9q10fTlPHn3TIPB+M1z0CpyWaXEjL/UkD97cPYqpwq5whxUZPrvK7QdNFa9YGuDVZR c67kNDuJ5S7AGtBjn5jEdRr8+2IrYk2+2IjxhOJhbAvPasaXwsMVqMtTMbP66Po1YSVVLX93K63F uuAtaPwKw3UGH1F1+UGcgLrEZBSxyBlVgLqi3E5kEnU5nvRvCtRljgn9SyItKD7y2l2qONB6JAtM UBd3LQOEIitG77POqDvgVTwjlpPZ463hhtuynhjXqy6U18CmDHDuoYUhjuyAigcWYgAFvowmEJ8r Lr5E7ED0hVEfp6n4eelU0iSm0KyK/doWvCNngNim0H204mZpRaxfc6xBVCx9iBEEHHvG6yjmpCpP SwM3CHFGY7xiqbI7PKwX4r1/kCzuUTlrqPYS71EsPmP+2JPtTsC24gwRZ0z6GCu+izGqkXFLQlnA uORu7wjOwjiJI2LBoxRMnfHKxD4iLZThGQqL1/g/TWSq7a6J29ApPOcBubBHZNc5NOGdyCxhomgC KPgZq6iKrH64U4thWctBqEGxnuoBYQUSklIKwpmcPuVdKIxU+hpVQ/Pk8i00lF0eR+3g5b61+Xsm frC+At8n9sKym/xwygmdpWjshVfWEF9hOAsmhZdklpBPdZeIQK/aK+YgqZQdwQqPOr6UltDMDpL5 WIu+CZKHmoFncjPv6vsUwEK7kQIZCiyN8hMJFjUNGSwDKYhTCv7DdC218rzVQExzXt2dKESPXTTu skXrUfOu709dTL+U5S518SRDTD/5xhPEwob0cfio1Velrpo2gvJHBPA7f0UkXSx1sfm0xKP+yC6J L3WhyiiMSq2Zdeoy/guX3lKXyw7jWd4wecweS11hcAdBAtDaqauqJQLeUhe/7mnpleaypA9AH9rN iM5O971mSzjNPp3hz90ezNvSoIvWO2cCNihucQkb606GvOgxWx3/ORWWTtO6Y6mh8IaNKvzi1Ujw sgt1jlppMEeEY3iYaJuGXzo/hDJ8k9vrwu07zTVfAyYyHx1zydq1mMLslJ1zlJWXWe+Khm9/tkB/ mO4Srn+iC2VHfuJ/kxX3TXfURRSodcvRqjhDZtQuWabCVh88z3euLIBU7f5aIFnpJbaspm5qv6AI EuKbgVbZGxf+SEU8/Mbuk8uKoa+rBzHJkpjtLdy6w2oQaBLSllb2lZ5xrLODmTX2yC7NfSUqUZEZ tN5RRS3e0YXzpm6cx9UVH24SzEednWSd1XF71Bjw/35GgJu3WFGXSNKIOBD5ZITLz4nDPmgA5eyc huifJPMn6ER1AHLVNmJwUVGCY6ooaNeQZyGqnQ5TEiZ5nG0UhlYLR4j7P512Qbw+jJo4cZANyczS DZOd2CIFsjkAzLODAaEZk8/zLcqdeAEtpcI7etImM+x34b394v09OJz7WRRNucyVqMfANAz3sIfF t6SE9MHKWYdhCy21yvFPsGPLVG8/cIAxnIqXnZ5FNTl7PLNcZDzIShjAGs0qUtQiqMh+PFjVFLDs CL9Pl+B5ZZeie27gs8tzxd1v4F+jdiUNuFD4S4z6fP6AmVJF4XONTrcFrPAMviAfwbXS7tFCOhJd yoBBAlv5eeITcZ1Wx3mFcXFP4KwPyQQmIlQuawMxpDQJ6DKdh7nkQjLOst12xwhxCWKaZVBbFBj9 5a8K9cT9WOPkM9x0COUgedhxMRbPgDcTynBo3kSE9Ga2DD5bLRf0CUbNFbomc7b4TQborryIgMiD ZinT1dch/K04Ig+i5xb8NjNfWtRhFcEXZduzAyAYQbMQj5HczO6NeAwogFuqLYfE+Cx08Owj8pSn Vx7jA4tlS/G6YMGTiOi+jwenik7j1EmxoRU2j3/5USq1Ex9SKSmsTCrD5XiWWs+/GmmJQU87Zx9t o/GPPQlEr8OxLefGFoZ6lzhZEhiiwhTBTm4A6PyBZdGlE9tXyOPPb6G8Vz17OavHJ2Q/UW4ZxdzC jUmMGPrMrdUP5RZHRVtuazyLodzCiiBzy/PXnkeg3Komzl8TsPaqVS0B+sqtLdrl6y0XIk4nc4s1 qfrVSshP/G8HVJRboqNlbk11AExX8VBuKZ7P3EJf1YoFefdqZbFcjcyt1oVrDXNrrQ9cucXh/POa S5K/YINW/LZSAl+bwK8wqgsG7fd0aZuYEJn+OgTYW8Tio4hrqBdAuvpVvROWt/2uweAgQgminxMN Rohu7P3RLjT4kVsgGmnPc3ezRCygdA7IijpFV4ds0Ynn/zKSLbCyA6UxEjFjXzM2dkNzD82XZPjO WqCxfAYh95CIMQ99eZBu5/mw0Jj8Ysue5O6gYcu0RqUEujp0rezsQYxohGLLseoEul2Tx7uUlAX/ JtBKghypFhc7HKsxJxs2gT4X3ZeSukyfQwt0oys5hatjKiAVSl7FPTdrTMcHoLNA97+PRyOuNUSK 5d9//0GOAEmmhUDxpeuCCBrBxm6naC6S29ay+6NtnS64lBoTmrIBY8liVCGWM2MOOWl3AbYwIgqw 0EP2NkBlfd9nGF6D6OnIt04ZEbNU+QwECS8k4bAo14bfN/sywlOcAJrUOaZ5jiN2ay7lpYuRke50 c2t6COuVgXGvl+XLUeywvVeeXTj9BxPxenoginEazxrxbH0WXrHUAte6s1CWDahYMoqciRFb2atD IWJiEJpNugUsjG6IpoiFhk0eVFSS2di/up60pF3tuIu5pJhw5Y2JjL8MnquaA8nMu8hfYoLeu6b0 4twIQdRcqT7WQ0MeoX3nGXZQcbYUvCpGFnibu0xDr6EzAlBoDlIgY3h7+MWD+uPVqdMfDp/sR64f YcOxiqM1we4v5IS5g7Ckwl8yy/s5uYv/uJSZccvNYe4IQeMxYkSsWwY5OnLFgZ6gPHHvnvsTh+pO GAcainpTBrqSHIIO/ygJYNKBdu0mE37J9hxCY7WEUT0SBDMHGgv9WtUyWEDWio54FNIuACjBgcZZ JBtfCpD7fiChv5uROdApvYCgoT/zejrQgZqQwvtavw70ZPdmkEaWIOjlWDYdu73/jFJnp5KlZ9lJ fUYBM4JJmnn2RMuOZ7TBXII0727OOOheHhDSZbYRxO7wGRHqBvyfAVDxPQN63D1zEaBLK6QeHmRO 9lYxBv+lau30u35U4HUsNwO8CUGDMHjPisF3wSWy3VqxiApqAg4VQvptAVBMSJoOJzplSJTiFdqQ MadvkmfGNHNKsD/RCtGrb+7jyFh5LokDHjqZnttUCeXphEWLiO9hpTqVPz0s1z0u8iok6t9OgRB7 +aD0I2NhAYev2wvkP5op9TC58E54rc1qxbzBnGxzuKfhrhvWMFaDr27hU/RcVo3Vs9fY37LrbRJB fsjzCc31fUQt+8vGRPkrusqmOQo4UOzKWEkWy8q8Y2Dn3Z5kFMCHZTgx8oP9QdYSkaW05EC690Pg Fs/7h5EBXpcBGnMhn1rMU5UFGCEWeJK2fLmyiIXBagxWm3Nfr7c20sk3FYaEtORe8kGeITJISjHb Aa42tn1D1Q+G9gfzo1OKjMw9v25KvUDmu9G7X2kCf5dKXb7bvXKCCMxD2/YaF9FFd8quZQx5ZYtL LxMnO5S4muSJRkAjHCJyJIRDrl0BdKa9BJ8nuCakqyD0hAGVsL0YQG5QCpI4ceoks0KyMhohTuby I6PzpI5JK4NyM1Z+/8KrzM/Ol3L1vMN9YY9dsUC/p4JxWA2jeCiTI4IyHLNePqtPjvDN3NHCvk4b mP+xt6Jm5bAQabD1JFSdJYGhoM6XCvkjd7h8KAN7k5Vl6O38qn7G96HOlV3Gg8u1asZyFDI06hzA oNjrE+8DMS+aJVHnvRUKy1Xn6ppI8SqQ/yDlnlF1Djox7otev3hPos7/+w3vfkLFZsSiznXasJyM MYMffV0homD6DAKqwfNUpNCa29GCQYbex3iqOmtrUOcVrCWo877nzaQ6d+j7hzrqDSioM+oQdukc KyfdvgrX7w8FhDlP9QFy10GuRpNA+AE54cRgF7cDh6Y5Nb13jwoDHaUSFsVtrwQ2vwykt6izf0ct 07NsX67gnutMnNkJmMAg5NGvYjisjSf/JjQHGbllCmotRECTu6BDTo5JSIPTzFcdozPPQviv0sqh OWE38Xt5c9VkdKGmv0WJnLkXMFiuMLc3FrbEOy4XI5FY436o8BRomBwCM74sm7nf0s8cV3VJODRP PwFQ3MFbqdZAaJbuq10HZpBGhdPbA9t+6KIAyZo7P6tHkaB08zNDWKNkKDQP4/8jU7aVSigSmgFK Qvj/aeYYAgGfLrkAfUFY4qRsbzCVyCyPqhF3zsqDc+LTHZoDs1ECqjvWXmJ0s5zc82JFDKF5Jbh8 4i2jv48aPvPKZEvTbXI7KseYldse1vd/5jgJzW68RRf3M6t4aPYaIB6fOSEfmkm3K7FYKh2hjZk3 Crt/ZiMVmjkCePWZX1dPtAYrhOZ0sdIBXP7Mjy40swrgSFUCYdlDsxYBuP8zE1loVli+13/mVlnu NoVmmUCtjvyZzXBNc2gmsp4mD0DHn3kOh2adBL76zC0ZCM2AqMqwY7L7M0dgaPbcXEv2M0vdWm0M zdaRtDYMRf7McSA0+7QXg/ozL/gNW9ZQhmamn+M2lWrb9TnyAheaYWmTT4zzgQipPzOd0CzpmlCP N67eTtCEZnmsOd5j+XhBHZuh0TU/+MzTUOCLhOayyokSjNWH5gjdfDUUdW7RYT40fzVNOB0JetQU 0Sjby6TJPI3JnIwYiR277O6RmA2KEvVkrtByoMKxbRuDXo7wbbzs0tSPkR9IMIlqqsQ4mNaqSzUz 1Ajosl1WvDzsSM0yUnW8DzITzou2xsXA5b39tLhpCN1TdMhsVgP07n3mYpw0V49pBYhSrAreNK69 riCepXf9FRPIGyOrmRpoarrs22h9seWkJbM1szm+RSyCy3QfO+oj61KfVw7sxgmfXzj/aOl7yyot B6SDBB2MNNA5NSJOaMokl4RWs+77ZiBbV9xxmCB5w9fKFFc36gjJjismNJ1pWnV8FA3vXbMX5HeG 9Fj9cEHREp97YlX4kOax7N40kFQjOIXSnSgGYa+//4FEey3Q6gnhQxRXSXZuhMwoLlvyEeyPR2SC qlgpe37Vl1VyXbZLqoFY5B7OOOANlKjITqHHMuCEr3rb1HthOXK9Rvcu1UOsThmjWJMJbvE7pBlS mGb7jRUA0iyyGnTOy9oNpwrxuGjFTMQ0U74YBzeBHnTkBBNTGr+WNMeguSKb5s3Glz1SgHoSU6Z5 tv+pSZpXoesWyOaZtjxi3TAJDiF0ENOcEbx7N9d945L3xQFN84r8dsvPHS0SHo/cWIgP+0ICXtr3 l9dC3/xuNk49/g9NkZVDZeDOWaAuz9SKZb1fwStIUGto7GplF+u5Tn9xrLZ0124yk5Zijhix5YJi +Qc4RKQmxBzKL7cY1drH9CCnM0FCqBhIBSgtiE85sEk9zJlj+x3vkyDsJdYEOhPXildkshZIOyJW aMNDCJ7yRmUGt6KpF+f6hFkVQt/+ztfsZVC9P0wocvHqKcAjwLdCIKqBZV03YQ1nspkm4ejJysns 3FRZjYY9bIKUQNQFQmY+ttEjjQdaghF1VQQ6gNaPshRL0pFV+HQxfVQWNcYp3wuvFsUN1lW6DeYr N67cSGcTQ/z0OPSefUYt4Z4Ns96WEzKsqG5Lc5xID4NLmAn1vckwmK2unGyUWxvtdsVjcDZs7R+l qbWzW0vBOBJu+W534bi6RmnHMlUo8m+3agn1wo/qK5UvMHYvPNq6dHo53h3v3rrtUcAIHaWDUDqs lyEUTX1XBFPBRemVJ6TvzJus5rsBYzAzVwogV0bGKzHi+TBjs7ZMoaQYWVOALtMMtKmp2w8Cc5lL hM552uegZ1cp7bUYHX0Djszx2kCaAfuZPFo8zs/MSelIt5CU1GZI1I/rQntnCCNOuTbjZzLph55v jfJs3oDA/e4JQov1iY7v41GVEWG26EwYua/Cm8I7OkVw68vQNDiKs7MFIsxiUs/VylqLmRJrdfMg PH7c/U+iqNIOUeohyORAvAXIjUiC+v+RvWzb9ywy0dUahP/mTik1by50VKz6zXJ2qrYLGWzphq51 FhP6ZDCjBhYjAxZziR8CsXoTEucZl5BOZGYZJugwuXildEv4MHSmZrjklLBa+GEiFjV6ZxB7Gf5o MDdVrkFu/TDNpdSz7lexM9fkvbWKjJA/y2PJWrdmEyg4tB91cSiEnuT+dZYQVBqhA1jfwfKdh0BI X7JPn6cbjkKxMnGGm1cV1agK5DiRg/LCFF7un/S9W2dLhyv8s1xG7mcs0fmXaAO8U+MSW6dJ7QV+ GhblTcAehh2Ejvty81S9lhrPVP7oK27geVxZ4KykECtemI7vYbuFY4ME3WIsR8L4ZXsxCVXGBGu2 wXvKCBZuXXVGs/lHhXQWPJrNOcGq0X2C7bYgVW1gnVwMc3dSi7xe3Pey8XGanOMHUCnJdPG8wbhM skwB/vXxT4FWkFngHZM2htZSYMykmdLb3NIfc2ZyPHK/bccR0aCaF6SzchS4IMl8OcRAVF0MNLW7 /tihKS278sF0XuEdT4/FybclJu+MnsVU5VNDypvmPGjWDHx5ewZvILoDNttRHS2T1lkcVDMXbM/c M8M8RBRlCyMbtyjK0lyNL9ItPp5hZyg9xOzbm8axSFEeyPfkM9hx+KesGBe1CAJn0TAWY+0w3qqj xNFfWLd7la3liUikPPdX4EdoNfj8ds5OFh7zvybx7CHbjlHKSmyF4MB7HC+CwLYE98hwFHIwyNoi 6h8Sv0qSAUqgChYiXIwkPWY68xpyc40IM15icpv4t418ZYms8SazUxp/nohrfQKeBFMlW0qccUYs F+xw+/X+3uuH4X81eLthfPLnqZadeeCGHhqOk1j3BQAjYl/DchFBz8eOylLQKaZT1wbtatlMi4s9 cEs9EZiHUIGPFVuEBYjUCGhBOUXeHRCM0tmrnJAlxT2ds4852vpSJCU/tN4UHN/JkFV11SzwZDJR wUN5wVdI90eJab35w3LUvIITbKj3xZ/KgaMBUMupyRSDkojFoFe9pWtVVlnDckHHadMpwNYhwfnB x60gt0Pz0bemS+HM+w3Oyq3vFcR+Nmx67hnRh0iMR1w/6jISGg9JTxfo3yTmjs3U2SnSCpmgr2WP 2ipQQzPEbLNRlaz54+4HJeeaybrNfHcCAwn/bP0Y/ikHHd7LfvJHmwdI1q9+XPBCKF0ZAX4YlnfY FJ/wi+UriJiSZ/YzSGL6whqbX4Z/kQSwAbnhRwxVXZ4jpLtGfM3SuiVB1/8wYRix4EqAiBnq6Q+X YwIjdihZtgcq2FZ7PRttw7W9/Ed1H84p4lM+QjY8fM3Hx3cMUd+m4WPawfh+vvXiPWe3z3jND9dl YcTAHTJlt3PKKB4h4r7nC4onj5IAV34jCzU+AMYQyYtirSLmeAJYKZmvDK/5ByHDTxaDq4w4aiQR 8OyZ1P9BeKLVbVGL25FMGHZHa4/LXWdUhSxErl8rnYs3foA4pRfD5tUQ2VkqSBNGXx9GnbNHwY94 RMnzVucHoME3nmifVDVPFlWNl/zVdJdDhMUnGxuB0gvcyDkB9RjmPY/V9PB/j4jYu5qwLbOthvyI rGYXk1B4rcn+kXPkxiZ1EGDEJus12gxYDZeg+tYJWlDChH2+wP3RHPiZC7U+2OXovHoFozE5oQo+ HeGwNpm6t+FMWfl9K8YN+VYYWo6wvdPyfWM2qV/tpbw18B1lCcoii8uF9SwoQcTTpKRLW7xeWC/A efZ6ri9ii9+j27lAkOwM4ziuhr2MbhgAZ34XyZ2G7rnqvud5MXXiHccruPkfR/IMy/wY+3G0ybyX qFnAsfue7uLPMlvCZfUhpCzDwmd5RLeP7EbbpGy92Mt4gRnA/wJiugTAGmkMFqDrDQ4wz5mIZDIU TDsS+BVcVGgwMP0bVkxoiVSPSZ+gI61hlzfqUvA9aMSPCmcTy2T8Oc+kZjvBuneafkANVGJVr1xu G1SWIXPnbCDL8SAGUxbs84NSbLL09sN1EgnFQAVn3bFSvcy1S80VIOG1qraQA4tLYYBXWoZqmh+C OAC2vMZec/pLksOygvUW+0FLpiQ4/Q84QqphyppMSCzqTQYGJBlPUGUgVk/Mz642kwSUO+tr1PIg /0nJ8JsPCEa6l/cukMpGmKca87Uu/oE5tpWq1qYplCFLGChfthz8HDZPMbW8z9NMwJ1qXvvxeRHl Au0LKNBAFTthBJp4qPmnn48u1pJDCpMbAXQBbKzF9kq0JOutG0NxQGj+AwFiMumGN0dJ9I73U7O0 VPuRpzYKIYz2ob78JsDX/whm0zf7XH0JT4x7HRZYka9sUQJLM4yM5t1bh9NkUMrwnDAI+jmpBIS/ rDRV6PID6RBZ9XJ/Co/CeD0S7I8cye85NyrJZk7iq5Cs6xVGa+MlyIyFLWC3M8VnVCdCmRc3hCnD /qMd6DZUJwfu9WT9EuDim5vXqCwsG4Wug9dAQ/O3WlvEdmbtmpJ6RRm07LBwKg3BiQI0RGPSKlj4 8w4LPsfD8ZXWSNTAQFgMwwXfGlio44YeBgStY/d+XPr4a745X0nW6Z1pUo6YiScLaBjHZTgdmnNr rG3sDEwZlHQoYNdain3aC98tKSmKnZVU/RnnjQzWqEMP+sxpP5RLMnVibPuTPyXutMyxITFcU++X xwoR9Eg3ZU7oZwi38KTkPJIR+C6XXgwbq4pjd9KMiJmg0QjFNn/elUeNrL0p9fKrI69QuNa9YnEa agJ4I20MOLLJc+CXe9qYoDUKMByY3ZeBMjtrvcAjMn/0sQyN1/YGVNzwNjlrLJZ8J1/Gnzqc2Zoi hDtA+NEs6R03veAi3qPJBBV5OzOX3IbM4sPoP/I9jbelEnnAzHWrE9k0MPrH/YwsqA2QiN4WCxC7 i5b8eC4bEaZLKqzPYPfaHMr7hvNjWfc0QBfJyT49TFFPSeFFjSaF9iOhvqYPVYoOIyxjoxVv6L8a piA7/rItWDCDezgEVIopFmORH8Rvo4Xnj+NaWj1J++CNfbhUdjL6h4ujXqYQfqAFDFeG50BYBtmD A7N5q++enkgP3fiVYDBqq8ChYKMslww2LAWV+XGYf91Mp0FvonRdPTBwlL2kO2+WHqRN3AfJE1kj cWM2HYXGAu1WvPHs7/YQBZUOHwOsioxUSmf+Tw4KH+WTgBwp5ATlIjoYAGyZb5+h2aDb1tdOXX05 WfdwSritSyOsAPIvHnNxqAsRS56OYmQFiIhdvJYAwJJYMsNr0yAAjEe2zt5g4FTIA+DR+9Ow7GnO 8eQWmgw78iJU053smmJzn8U7r2wx6V96/t2Grv/3q5N381YbJ+ByeBbc29awLKXECRDWnjCJFsdo /e86c1tYAVatPraOeKzVhykdvGk+wPEmLbb//B2+8EOYa62f7YFKq3JC0gXycq/WUqnRy09jw3Xp v1Bt3V/w4iCWcevlVSh0LzQ2ZQzY9MDJLKiS5ZkHjFaiDaBNPwWt6zHYDKEG67HkzdXlTVPjTvzP 7fsvs5It11lYgtaS5rLhG1iTVSeaaFFO2Xi3KYklpCRjBZVm7SBrj5Rlb/79KIpZ4H2YeOHTL+s7 ZvWj4UTBsPzIb2B5NZTJFvS7CYzTVzJOIIseVOgehJT6vpIDbgAVkeLE8IkSzVAkRNqSgUjGlYey fNCKML7w8xFRw3rna6Ae60UWuiGRqbO13AsvPbsWUpFjvb8Bj8uSvxDB0tuotpXO5Ms7q7xRhOK6 9OtlQdcaw0Cp1wRJHVksT209XrIU3OuIvvIZT/pq2LpJGWs6Prs1bY8akUmHO7GekHMoVmPEeAWe M2xr2yrUd8aHYdyDDVLdNPCVsuBK1ewIXf5VDfY3GHmnVPVs+FXX+cNp2PLkYfHL6kTqvEMLDkGQ sZ4oUcgS3/sQsldTwnPg/h9epokLDENdoKVIXY1MW4JUhyZMwbTMOSclJ9KVgtkjlKRei1FC4usp TQvDS846Bx9ZrRNtG1SYSRj8ofkPQNq9pq/hf5cqfHFO/g/SKqBPjM4JXsUAsXj5WsXyA8nBfLgX VRO4yRD+R09S6rXM1Wcnx88EWolIycH0EFfuixwI9Pwpnl5Jshk9UI9N/vCvNpzfDAlilHb01Qb6 zVSBdXqvCIOzSOWqEFRkQBW6Z8jyfXInD0UKiZHuES8I87Gki2C7aATVEpeYp17OKTvfG8sFP0wv /+6KimUPMbspfj8h3EiFE1XS0hGZKXC9l+6m5F7lukFZuoDGJBxtwgvWNhKkK4JrqWR2ju9kzS8B 2lxY7KW2fPcvJhF6Z4GrIS2XU4o0mN8QSmY6maBU+IDkikzS85DxDrV+42M745qE/GKyG1Xi415K Th1RwXD28QU5sV3GBCcd701cmJw2APfky8ZnOmIamri1ZQYBiX+CNnkaH50geugogtqeVqhqzR7i jB3G5OpbMwCvKAsfjPTQ9Twe/qumTFN5F6qLrl1IBFB43az17RkV5yVJzlsTorLEbOlZQHb03o6C Zwab0rb5sK682HxVFiC+G9+BbD6Ss4GQCAMEc3RcHr4Uv7miJ5DnLNxYCftLp6LVqcNRR9Mbxxxw ysexl3jodGBeVvhWulKy8UdXQw815TrbI+ThscJ5mU+VmvUD+7UtC/IjkjMowp2ZYO2QOI7p3fnm Aw+VOkWg44s0Z5HXOcBM/K1pB0kBnuhLd0gNVsLv48bjYmJhCUW+aWRAV8Hwhki53YrE2ATauMNz Y3FK9oB92gVbQoS/sv/8vBaF7b6yl3MVknZDSjZiepsIYGRGzRF2Fd+SCqwWKF01LjF05QE+lZrB kItslcq7EkcWI9CInNnsyABWI9HS3lrEf6EvIXjOJ4gh2HLjd66K3wB4Sgy7eMmReWMLq6NIkHyA a6kpyKytJgZJoT0auCUvk6crxDJQiIUZxDADpBwZJmjS4VNmy75exO3uexP0BL4387d0Q3N4a/5t TLK2WZw7LNHAD3vWK8yU9WvBSFmV6T9+2qcuxary5LJSDLE5j0taEDwvUe6THKHRQt95ieWEffi/ 8395nVHEwQps2jZwYHn5BACKaa0H8C6hXKd0mB9kAyX7S+30Qz705TK3zlDQMp/ntnXqKIvOaKY2 FZEg1oIGCHR8eoVE9QUSFoLAu34s9Hwtgj4Ztzi2bw9L7qqjYAzq5NmV8BQAr8miJfe4HdW76uDa +fh3hPYPYlCX+UPZMl2KmqaERleTGQ0f/exlkh1xT8ARPGpc1lHAK1awWTcqaArQUPR8sNK78QhT KFpEgWFdXKdXt1kBwj2WKkAUDozeBtCgX/NldYeaJLthe9MtiC2gjVAq1OWgzNOB4nV0kzYtWrSY B1HX1YtHAh7MSQ3SqzwlbwA8CZwht6lHEHWfG2j4xcNGwZJiNCwhNCtrF3dfu3mO9JREfZRFbgYU LTz9yunC3wpXbfkkMwq3wpHqgQI/bX7dtTUZRtw8/GCq1aVqMZg9dSDzKNwIkojmCO++BD1dzfmz a3VwsusYwkockz9nDCEvfaa+Nj7ljbM+Vz65QP8mKjnXPl+i9EJW7VD0mBFaGThE8gciRhNUbPwt 7o0Uiq5ZwB4axz8xDaUEWPo6ucbjQewVXmEfyAc40QSu4yfTTIqVwkEZCkb0xBMpsl5zvZO0WcjQ HloORoKR1NCC/dJ6macvS5MJaHWP/CFdidLZ6v7ElQggcA72RGDytRolVocx3TlHzW2BTcnVfWAo e5jEtSkAmz+ibSVYOYHRHLEk/5ReSx9wPDgm8B9ciAuUOpCBWT0PDKQEFkNoRCyA7hgkifBX+kHi flDBmwvs57zk3MIL5P/alkHY3YudIyVYlIBLyKwXsL3jmFsFnC1GR4PgrHEITOktI7xripQx7nZL w0IsS0FnYeH3+Vuj3SqwFfvLGXf/LFEzdl3R9Jrtc79vXELsDCc7Jdx/f5j/4wGEehk1Dif4F5o6 vCNN8ghiyTz0PibxRpwEp4/cfE5vKaZHyNZxE9UGyjOiLeM5Vwiou9KaWuJS/iSNQ3c8pCzxiqun h+SEMUGA7Ehf6x1fta0y7NCtWCko0YP67duvqjZ7ew7jFkASg8GkJNeTKe2/rq0CUIrpXjsjOonc wQwOk77BPaoWXzukuZ/XRzu8H42oBae2j7F7kEkIM2cdYSINhD1DlAKwbfymHeBrxWjQtR1S07Vb lDKQjem7ApjogS4lZyLdY1C5/w/ISm9qXrSTC11R3LmABUBQSatJCZNSfpo5SZ0yKSLOU2tpZxcO md3cK0s9td9FYGhr/1yH3WosVUqSP2QADDIkO5Iu77ObrXsCJPTpQ5KC2ip5jLxNe3w3Cck4eEKN l+p25nKbkKA7JkHZjbJmDd6iLLltazMSNPv8CIKXF9ASLCKUdBD91w/dAUoGsmJDHmjCrn+bfQ1o xMvlQjDDFcvE3CX2P/lPpJqwoSS1+hMwKloT4HdNbqQI3DofrIDNHW5U/cxLQgZcFSUzKWAJvR+/ kRWvZEIWO3sJYbfBlqegwBP5HXi7QbwjngJ1AhLUrnM81AzVSTIzXynQuRNYsztiI7cw+eMcCZbq /XCksoRZYGVqJ2LhgLYZraWTpcoTt2V0DUHAQ8op2jGEEFLQLdDKyrXQcYfhP+dzRPOGbguuK0yQ KRF6vJRBbGe6QwNes3Bd0/ea82R9/dA/kHa0DTxNQqurQ5GYYX/NKBCEbSiNIAhfjZU2SHwgQjwY nGgE3NLLOvBLDTaOoPRikNx8rUIr+Vo+yyO1sR0hurgTfl4OPQMA0eHoEigS1tK/2tFjp++bAUHU zNofIJq1gIUQFdrnrNqCYOTxP+vjpx5CL+FiIUDj4BqThkltJN9+HgH50/IafldZHIvQ5XJFd9mF Zj6rovOz9f4YZIzFniR3hHyLZNQuomDZmrXQxt2sMjHWPg/3t8FDLxUUgv09A/SM23AJBvKgrhNe wy0w3UE4P7xtCHIQCWGMz++MZJWaRWPSIabKyJhpWDPaPGNydFqoGUNNgCS2n1JwJhX2lTf1yLNK /E4b6Qvle8PPjQvvt6KqFzRvK+RjwNt7z6Gtdi8h4y4Wdk+V1wF3Iyx1S+hBzo1PrutNybppw9Wy q3mOmH3uiO06s7s5MQDXyi9LJZPFGM1b8dTSJebZ6ef3MQGwIZKU8afuvm+Hf776R9XFI34t9B/2 vnvzP6q+iow/GO3dNv/zeKXv49pdueA6T7zZF6h600ond+6l5bdxxQlfmHHfGwOvh7dY+l2qWjdV tG2nDRe7DibTGuw5o/CgruRAo/f+G2jvdP2+vHLUy+7f35iYoL/FD/0TCIoDtrPWRrEA+ptZLoHo YCxUaYOamBt02bmlIBvlTGNDApTv4UT76UAiWmABoGIxSju/5VBG2AcqBBdmDkTJVG3gQ2gcOiNx jDNZE079o5jmesUxMvDivb8TB9Ydl/vrsVtOpa9GYzVDmjuE1bqjiNELOYgxO4UQhIUCNNWBH6kF dEwuJhYAGNyx9Au6g9MtOvMKZBV83uh+DQluRvot2PTPikxdLuEwjbRpICPQU1BQU0YI3Pu7KJP6 eT8aNxJYxY7cqP8bMtOEyYGuIcWVlz5knBqR/kNgE8rN6wvwBRnzL5arHYQns2qbELW4UkyMy8K6 ujoZiZkWVPkUpGJpnzKAd48Zs1ziJi5GTqOjBv0Qe9tMqmkpPdqfU1LnSjmxEar+muH10slrougi XLYO7TzrOG1CpVT9TtWQaNHijq8oFxSZTL6ksD+TInGFmlw6WKI2nr70IIJqT6gyco3E+iIY9Xkw FAfrX6HOVkWvYKjl/skM8vdyQ/LXW7L/bDZ65xNIegFdUQC6aBgTLZBM2jYAABjE522MHw6iHA9y tE9Q8q6VTYOsrOyKiIcMFlNqQwAAAMDMjEgEEGQBNgH0AKRXgAoHBliYCgVJc6lkNEC4VKhWKShg aWSEHDNQsmABXkYXCyaRYBirKEHpzQYjQmQ50KRxXahbfCLgeVRrl8Ysqxid68o6l4JkOB2Qy6Zj NXQyzaWPo8kGMDBm49AAMrGWhoaqCulHFTUe13svAoMBsBbSSaQVA8XJozWZkA8EN8cDA3uUFEAg JYvP4HuqgSxcmUoGxDIVASTNpWJB0lwqAECZqvJJcPExIcFUIHA+LA9OUEibj6fDsQCfkwqeWPDJ loBllWAUDqC4Oc1NgSvjI451OlJESrUqBIGClHdIcCa0YAFmYGxIsJONkcblQWEg2QtPhwbWUdhQ rAcFY7AGThaXjziWAKNZgBaWDgpOfDoFLqyUSekGmwcKPhfIJQ4nGIcSEIlMHJTQyYaAhnGXg+qz aSZglb6MRLa0kKFZToZiOScAGkCYcHwg2KroXGphIjAPzLIWxsiAQ5QPIDpbUUERqtxvMjNknc9P X/byQ41PHT/Ulr4bnxvynK1P3ftGX10pZ5Rxnzqfvh7l97OMEj51D3c2/Mm7Kvupa13X2JH9p/I/ bRhOm4TbdsLcbpPwcdowpy2EaikmLESdBapcg5Oo2EgxYVcI1SYwp+0kcxaoaiKZU6ft1HWzm7zu PXQyEbKLiehQjWqZRzWqUW3hUbyIES2RiJfIRGSxWCwXl0vZZDLgIcFQsTw8LMv6eFgclmWdcEQR jwSFVlVFWU5IDQM8J4mqolpVUe0ivQKkGgNDBfMhSVwRblBYpCqw0SAkcvrgCwAS1SwPQBbpc6mO QDpbiTAudYiSxQwhnPaUOiogRzSZTlmJ46FSsWAFDzJEFjwkIOBgMkWIFhiEJjwPF4YRjgKJjweF 54RUDDjAwZgWHxEmGxqTBtsi2p+285u9TrZk/2VV+Y+nO9nS44Tx3+GLcxsDBxcqz5b/s5/cCZ9k drH1vU7XLFv6q+rqk5C5n9TZSq+PdbYT5maD0EQi7mlZ1MfPreTkeznjynbhopPgOjoTt87CrYa2 E+b4QIgcaVmmM7rJPP1BbX6q8flZFep7jbvvZWyZi//84bNsmdNmt9PbJf8//5vsLXMvn999/r8/ jux+OTJ0VeX55s6WOflcruun7y1zs/0/whd7nYRTasf/b3/uvFBd/X/9ta+b7dsKVVXhm7otc+1T Rp3/zC9Gdu+zuVdVW76o20puzvXd/n85H8foVkZ2jhqNgzFBURTVRCOQAwkoJCcnMqGknESmkRON QA5EKSAnigA6jZpJ1KAEZDqQyWQjCNtJfai9URXyc/WWzYdznz+cHlvm/Ftjy5zuPyhl/6o6vzhj K7nJUM7XVZ3xRSn7NZQjp5Y1zwzONx/CJ/lbsmveyXPGOFsGJbv15y9bJh9G+Jply/w9t4uvy1JC 9VZyzB9jT1V9fgrbvYzdU7Lq94s9m8U6AvjwQY5O6k+HUDK3mzCqPnyusJWik9tQV6pqz6eQE3yc VTnZQh8GGyLZq/s8//ffuiy59g71S4dyeuZihM46/X/ya5cQtgj3Mir0Gf8VqivzqirzU134zt37 qqrvD/K2LIIJqCKckCmmZkQCEZEkSdIBwgkSBsI4kEZRIGRqDxJAMGGOJFEOZZRCBBlDCCFERkRE RCQQERmpOsg6HGGOlBVPeGvofzQPFGo4BOzix6GnIay2WvwADoFSRIWn1+NZ6yAf2ylj6m3ys8Ux vlhItIuza46CGEd2BHWyEgYaESnsxTjVCM2M48f+eMDWxhAFcK0YXigbvkQRWiI5lN2B0omQ+gdN gkaFphZfXy0KB4/wBkgoyGTh+5fNDrxN+FyHNEH+9v1CQ+pq2hfbCiwDSjkYmrbA4+MFdf7eWE30 i3FWxmrKVznqOksEVijWB+IuH+64qVX+hIJygFbMygP5UrJTO56JRQ9wgctJARs0DRNedYvT3JI6 0Evkvf0ImqNJzFZF1zrEsckn+9YITxJfKF1sH1E/bbNEtozG0/tPfwP3RNDJoCdK7YF551+R8nGl edE9ZB8tHLBvBpSvlUYbPGhJUgEKcX65Dg3RB5wXFM7Qo9kNACBGCPph4xDbkvV3tawgXG/lQDQd 5wHyJAWcUsUnvvq/DdIK+NR1A+26DWhDzbncPMTxkiRu4W30o6HDj1fRIEDaxCHU+QD32g3tGWnQ kkrD0+A8+KSM/POq1zgJM15jX72q29rVg56sXEcT96uebxy1++pby2iFqudwA7D4X1lk5qiFDJij GBo1pjhK7PoA9qp+kEPx3YmY5KgWAaBczJRmUhDTFXNUR6MwltBrfFfiSo8m0gEKlOcoxyrxIyqX GlWsOYriDibBF/aiW6J4899AbxfmGbOTJbtmX+RByx77yheS44UtThNkbiL+x1BZFaSbc3CzP9EZ JEU+xCFlkiinch4Xzg7Q4Z9Wnajc4rCcqIAjp0N+GMVGqWZzRkKV7+JchlZ+RoTITJRCdBD95WIK eTwj1SAJcc0Rc5CDukZzRplZwcWZjPxwEILGG+wCUjdylU5/U1B35lrH7RLbJZs3IiENtlBiqkHt TNcIN72bUHSLfCJiD+mRLCGsokZkMd58YCZBmVQECwLWbIzaRP5l/HmCKhNnjAbLSuJ3wEYkm1xC DYskRBYz3biCgGaH7B5T/cHpVp8gdcAddaZipbBCkJ2WYWEJ+1tLBCC5FpaSDixbUfemvYm0UBLf a8QUzbDAXgR2ZyYSYsiIZujuMjyOH9kN7yWEjzqag/+C3xOET4M43KXQX+wOQbjGwrpFAORG5un+ NesVuFEhNU601Bygrv+cmwV/pkJXUSveNIwIuLoMq0/IBN/uzx1P+NZcYoTNPcTM3In9+QMDD8In cJBdb/swvUbi02ven8+6Qvna0NfR46N687TM+/SKhM6M7GNMlMxc1L/CJGrpw1znFUKXqdDjsnRk r6GEjf+Ph8jPmvN9TSeYPJs1eShy9QMzsKTnzFSaKfDseqBZBH8vuI1iPJpWOL1GKqtTMMBtY+jV PTp19O7NzR4lGzNO87Xt2c9EYrRpkLDn7pom25I91i6T7W8k9sgmWzBN++0MeCzwaK+PKGKiKTxy 6iM4C8XGhEdgPoJ2zaQTHvXyUc+eAJNyykf68DxSqBVTk+pZl8RYywgmPnwzCRB4PhRdeqN04AYl UdRqUYeJustQ1Eg9ht4wHUAHLQPlhHi+Wu8YH5zzAqyx/TD2d/pfVYReEbm9MklkCV2affdjj7jc tJBViJkZ/Nml5wMkK51GVkyexsrq9zz24kJrTKvyP2bBDpwxNWFmo60qABNQVCUKuF6F16AM+oGz jVQiMHJxpMk08/BrLYR41d0orOJpZy53B5UxAoxX5Xu6qqH5KJzzmMIzXFmrqD/tsdSYfGMqEMDd x8ulmWiT0Slb1HhLh99OBg==
Synthetic chemistry
Speciality chemistry

Computational chemistry expertise and close collaboration

From hit to IND

Decades of expertise in modeling and data analysis that guide every decision from hit finding through preclinical design.

Smart screening

Virtual screening, scaffold hopping, and library design to find better leads in less time.

Connected science

Direct collaboration across medicinal chemistry, ADME and computational science reduces risk, and gives clear insight and faster course correction.

Connected chemistry

We integrate computational chemistry, medicinal and synthetic chemistry, with scalable process development, so design ideas translate directly into real compounds.

Our chemists test hypotheses quickly, refine designs based on measured results, and scale successful compounds without disruption. That connection between design, data, and delivery keeps discovery efficient and reliable from concept to clinic.

What do our partners say?

“We are developing the most complex molecule that is built at this time in the world…We work with a lot of CROs, also chemistry CROs, and so far Symeres has done the best job with respect to transparency and also to troubleshoot the problems and find a solution. Over the years we have been really impressed with the work ​that Symeres has done.”

Founder

Biotech

“A sign that things are going well - we keep coming to you. We’ve given Symeres five or six different projects already. That’s almost unheard of for us.“

Senior Director, Manufacturing

Top 10 global pharma

“We’ve been with them…over 10 years. The cost, the flexibility - the value is just so strong. That’s why we’ve stuck with them.”

Senior Director, CMC

Biotech

“The progression was really phenomenal. I am truly impressed. There is a world of difference between you and other CROs.”

Start-up Founder

Biotech

“They’ve always met or exceeded my expectations - that’s why I continue to come back, company after company, year after year.”

Allen Horhota, Vice-President Platform & Delivery

Seamless Therapeutics

“If the compound can be made, Symeres will undoubtedly find out a good way to make it.”

Dooyoung Jung, CEO

Pinotbio

“I would like to extend my thanks for the excellent work Symeres has done in synthesizing the API for Part 1 of our project. Your communication throughout the process was outstanding, and the sense of urgency with which you operated allowed us to complete this phase promptly and efficiently.”

Leader

Large biotech

“The team is making short work of these targets, so we will have to start thinking of some additional targets!”

Director

Biotech

“Through our dedicated FTE resource at Symeres we have achieved remarkable results, not only by developing a new “aspirational” synthetic route but also by significantly improving the current one to deliver a sustainable route for commercial production and giving us two options for late development.”

Associate Director

Large pharma, Europe

Your discovery and development partner

Symeres supports small-molecule programs from discovery through IND with openness, agility and scientific depth.

Our connected teams in Europe and North America share data transparently, adapt quickly to new results, and stay accountable from first experiments to IND, to keep your progress clear, connected and continuous.

Resources we think you'll love

CDMO red flags you can’t ignore: Regulatory shortfalls and misalignment

Part 3: Could Regulatory Misalignment Be Delaying Your Submission? A CDMO can have the best scientists, excellent facilities, and strong technical execution, yet still fall short when it comes to regulatory alignment. This disconnect between scientific performance and regulatory readiness is one of the most damaging red flags in drug development as it could delay […]
View article

Whitepaper

5 CDMO red flags you can’t ignore: A guide for biotechs and pharma

Selecting the right CDMO is one of the most important choices a biotech or pharma team will make. The right partner helps you move efficiently toward IND or IMPD, safeguard quality, and anticipate regulatory needs before they become roadblocks. The wrong one can mean delays, rising costs, and lost momentum. At Exemplify BioPharma, a Symeres company, […]
View article

Whitepaper

CDMO red flags you can’t ignore: Underestimating technology transfer complexity

Part 2: Why “Scale-Up” Isn’t Just a Bigger Batch Transitioning a process from discovery scale to GMP manufacturing is almost never straightforward. What runs smoothly at 100 milligrams in the lab can behave very differently at the kilogram scale. Yet too many programs falter because the complexity of this transition is underestimated or treated as […]
View article

Blog

O.N.E Symeres: A practical approach to real-world drug development

No drug development program runs perfectly. Chemistry misbehaves, funding shifts, and timelines tighten. But what defines a reliable partner is how they respond. O.N.E Symeres is the framework we use to keep projects moving through uncertainty: openness, nimbleness, and expertise.
View article

Whitepaper

CDMO red flags you can’t ignore: Undefined or shifting project scope

Part 1: Is an Undefined Scope Putting Your Project at Risk? Selecting the right CDMO is one of the most important decisions in drug development. Yet even experienced biotechs and pharma companies can find themselves trapped in projects where the initial excitement gives way to frustration, and one of the most common culprits is a […]
View article

Whitepaper

Accelerating chemical innovation: Unveiling Symeres’ parallel chemistry

By combining automation, data-driven design, and deep synthetic expertise, Symeres is redefining how chemists generate and optimize compound libraries, bringing speed, scalability, and creativity to modern drug discovery.
View article

Webinar | On-demand

From racemic to pure the art and science of enantiomer separation

From the classical and Dutch resolution methods to preferential crystallization and deracemization, learn the best ways to obtain your desired purity!
View article

Whitepaper

IND & IMPD enabling developability roadmap

Drug discovery and development is a complex and iterative process that involves the identification, design, development, testing, and approval of new pharmaceutical drugs for use in patients. It encompasses a series of scientific, regulatory, and commercial activities aimed at discovering and bringing safe and effective medicines to the market. A key milestone in this process […]
View article

Whitepaper

Innovations in unnatural amino acids: Advancing functional diversity and applications

Unnatural amino acids enable groundbreaking advancements in drug discovery, biomaterials, and peptide design by introducing novel chemical functionalities that enhance stability, specificity, and bioactivity. This whitepaper highlights Symeres’ expertise in synthesizing unnatural amino acids, including side-chain modifications, N-functionalization, and cyclic variants, for applications in pharmaceuticals, diagnostics, and materials science. Utilizing advanced techniques like biocatalysis and […]
View article

Whitepaper

Leveraging copper-catalyzed ullmann-type cross-coupling reactions in PR&D

Our experience in overcoming scaleup challenges and harnessing the benefits of non-noble-metal catalysis makes Symeres the CRO of choice for challenging steps, such as the Ullmann reaction.
View article

Whitepaper

Managing nitrosamines in the pharmaceutical industry: A comprehensive approach

A comprehensive overview of nitrosamine risk assessment, including potential formation, scavenging, and analysis, is described here.
View article

Whitepaper

Optimizing solid-state properties and enhancing API bioavailability through physicochemical prediction

Here at Symeres, we have our new ‘Solid-State Center of Excellence’, and in this whitepaper we describe how we utilize our expertise and novel innovation to further our solid-state capabilities.
View article

Whitepaper

Stable isotope-labeled compounds

Discover how Symeres applies advanced synthetic chemistry and ADME expertise to design, produce, and study stable isotope-labelled compounds that enhance precision in drug development.
View article

Whitepaper

Unlocking the potential of high-throughput screening: Symegold library design and expansion insights

Learn how Symeres combines advanced chemistry platforms and deep discovery expertise to design and expand the SymeGold library, driving more efficient high-throughput screening and smarter hit identification.
View article

Interviews

Insights into drug discovery and development 2025

Here we interview our Director of Medicinal Chemistry, Anita Wegert, for her insights into drug discovery and development for 2025. This interview was conducted an interviewer from the Drug Discovery and Development Europe event and we were able to share our expertise. Curious how our insights can help your next project?
View article

Interviews

Interview with the computer-aided drug design (CADD) department

Our Computer Aided Drug Design department supports our clients' drug discovery projects with some of the best (predictive) software.
View article

Interviews

Meet the Organix Director, Mario Gonzalez

We are pleased to share a conversation with Dr. Mario Gonzalez, a Director at Organix, as he reflects on his journey from Argentina to Massachusetts and provides valuable career insights in celebration of his 30 years with the company.
View article

Interviews

Interview with the new Managing Director of Symeres Groningen

On October 2, Dr Melloney Dröge started in her new role as Managing Director for the Groningen site.
View article

Interviews

An interview with Yadan Chen and Paul O’Shea

We are pleased to introduce the founders of Symeres’ daughter company Exemplify in New Jersey: Yadan Chen, CEO, and Paul O’Shea, Chief Scientific Officer. Who are they? What do they stand for? And how does Exemplify fit with Symeres?
View article

Interviews

An interview with Anu Mahadevan and Paul Blundell

We proudly introduce the founders of Symeres’ daughter company Organix in Boston: Anu Mahadevan, CEO, and Paul Blundell, President at Organix. Who are they? What do they stand for? And how does Organix fit with Symeres?
View article

Blog

Crystalline and liquid crystalline 25-hydroxy-cholest-5-en-3-sulfate sodium and methods for preparing same

Organix, a Symeres company, developed scale up conditions of the synthesis of 25-hydroxy cholesterol 3-monosulfate (sodium salt) from cholesterol. After the protection of the hydroxy group (acetate) and double bond (debromination), the hydroxy group in position 25 was introduced using oxone and trifluoromethylethylketone. Then the 3-hydroxy group and double bond were deprotected, and the resulting […]
View article

Webinar | On-demand

In vivo pharmacokinetic experiments in preclinical drug development

Despite a good part of ADME research in drug discovery and preclinical development can be performed using various in silico or in vitro systems, eventually it becomes necessary to evaluate the pharmacokinetic (PK) profile in animals to elucidate in vivo DMPK properties of the drug candidates.
View article

Webinar | On-demand

Accelerating medicinal chemistry by rapid analoging

Medicinal chemistry is the art of rapidly evolving initial hits to clinical candidates via smart, information driven multiparametric optimization.
View article

Webinar | On-demand

Solid-state chemistry part II: Optimal form selection by controlled crystallization

The webinar by Dr. Edwin Aret of Symeres focuses on advanced strategies for selecting and controlling solid forms of pharmaceutical compounds through crystallization techniques.
View article

Webinar | On-demand

Route scouting for kilogram-scale manufacturing of APIs

The webinar by Dr. Martin Strack provides an in-depth exploration of the strategies and considerations involved in developing scalable synthetic routes for Active Pharmaceutical Ingredients (APIs)
View article

Webinar | On-demand

Solid-state chemistry part I: Introduction

This webinar, presented by solid-state expert Edwin Aret, offers an insightful introduction to the field of solid-state chemistry.
View article

Computational chemistry success stories

Our modeling and design work has helped biotech and pharma teams identify stronger hits, clarify complex SARs, and advance candidates under tight timelines. By combining computation, chemistry, and biology in one framework, we’ve reduced uncertainty and delivered high quality candidates that reach IND sooner.

Connect with our computational chemistry experts

See how we can support the discovery and development of your next breakthrough.